
EFFICIENT DATA COMPRESSION FOR SPACECRAFT
INCLUDING PLANETARY PROBES

M. Cabral(1), R. Trautner(1), R. Vitulli(1), C. Monteleone(2)

(1)TEC-EDP, ESA/ESTEC, Noordwijk, The Netherlands

(2) TEC-EDD, ESA/ESTEC, Noordwijk, The Netherlands
Email: Roland.Trautner@esa.int

ABSTRACT

For all types of space missions, the available
bandwidth for the transmission of data back to Earth is
an important constraint with significant impact on
vehicle design, onboard resources, and mission
operations. The efficient compression of science and
housekeeping data allows maximizing the utilization of
available bandwidth and onboard resources.

While data compression is traditionally used for
science payload data, the compression of spacecraft
housekeeping data is becoming increasingly attractive
in particular for exploration and science missions that
have significant bandwidth constraints.

We present a summary of present and upcoming
standardized data compression algorithms for on-board
implementation, including ESA's latest related
developments such as a new implementation of the
CCSDS-122.0 (image data compression) standard,
performant multispectral data compression algorithms,
and research on simple pre-processing steps which
improve the compression performance in particular for
packetized data such as spacecraft housekeeping data.
Test results for various compression algorithms are
presented, and a new software tool is introduced which
supports the evaluation of standardized data
compression algorithms by industry and by payload
teams.

1. INTRODUCTION

The reduction of redundancy / information content in
data by means of data compression is an important
technology, with widespread use in many application
fields. Space missions were among the early adopters
of data compression, with applications already
implemented in the days of the Apollo program [1].

Due to the associated reduction of on-board data
storage capacity and downlink bandwidth requirements,
data compression is traditionally used in particular for
science payload data. Recent European space missions
like Huygens [2], Mars Express [3], or Venus Express
[4] have implemented data compression for high
bandwidth type instruments such as cameras and
spectrometers. However, none of these missions used

compression for instrument and spacecraft house-
keeping data mainly due to conservatism in
engineering approaches. This area is addressed by
recent work [5] and it is expected that compression for
platform data will be more common in the future.

Data compression can be implemented in hardware or
software. The decision on the implementation platform,
and the selection of a suitable algorithm, is based on a
tradeoff of a number of factors, such as:

• Compression performance

• Lossy versus lossless compression

• Associated hardware requirements

• Associated software requirements

• Impact on system complexity

• Impact on reliability, including data integrity

• Compatibility with TM and ground systems

• Implementation cost

In order to minimize the added complexity needed for
the implementation, algorithms are required that
provide high compression performance with minimum
consumption of on-board resources. All compressed
data needs to be as robust as possible for minimizing
the propagation of errors in the data. The impact on
cost, reliability and system compatibility can be
significantly reduced by standardization and re-use of
efficient algorithms.

ESA has, in cooperation with major space agencies,
supported the development and standardization of
efficient data compression algorithms that provide high
performance as well as low resource requirements. The
standardization of algorithms supports the public
availability of high quality documentation and the
establishment of a broad user community. Algorithm
specifications, test data, implementation guidelines and
some software code are available via the services
provided by CCSDS [6] and its members including
ESA [7].

In the following chapters, data compression test
hardware and test data sets are described. CCSDS
standardized data compression algorithms and a
standardization candidate for hyper/multispectral data
compression are briefly introduced, and ESA
implementations of the algorithms are presented,
together with performance test results on a state of the
art space qualified CPU [8]. The compression
performance, memory requirements, processing
efficiency, and error resilience are addressed. Based on
test results, recommendations on the utilization of the
individual algorithms are made.

A selection of simple pre-processing steps for packet
telemetry data is introduced which allows achieving
significant performance gains in combination with
standardized compression algorithms. Test results for
typical data sets are presented.

Finally, a new ESA software tool for the evaluation of
standardized data compression algorithms by industry
and by payload teams is introduced.

2. DATA COMPRESSION TEST HARDWARE
AND DATA

The efficiency tests of the CCSDS 121.0 and 122.0
implementations were performed using a development
board based on a SpaceWire Remote Terminal
Controller (SpW-RTC) [8], [9]. This device includes an
embedded LEON2 microprocessor, and a range of
standard interfaces and resources (UARTs, timers,
general purpose input output). The key specifications
can be summarized as follows:

• RTC ASIC with a 50 MHz core clock speed

• 34 Dhrystone MIPS

• 16 Mbyte RAM, 16 Mbyte PROM, EEPROM

• SpW, CAN bus and serial interfaces

This computer board is representative to many
contemporary on-board computers in terms of CPU
architecture and performance.

Two types of images were used on these tests: images
from the CCSDS image library [10] and completely
black and random images, which provide a best and
worst case for compressibility.

Four versions of black and random images were used,
with different dimension and representation:

• 512x512x8 (512 by 512 pixels and 8 bits per pixel)

• 512x512x12

• 1024x1024x8

• 1024x1024x12

The four images selected from the CCSDS library have
dimensions identical to the black and random images.
Their filenames in the CCSDS test dataset are
marstest.raw, sun_spot.raw, b1.raw and solar.raw.

3. CCSDS 121.0 – GENERAL PURPOSE
LOSSLESS DATA COMPRESSION

The CCSDS 121.0 [11] standard is based on Rice
coding, which was developed by Robert F. Rice at
NASA. A lossless source coding technique preserves
source data accuracy and removes redundancy in the
data source. In the decoding process, the original data
can be reconstructed from the compressed data by
restoring the removed redundancy; the decompression
process adds no distortion. This technique is
particularly useful when data integrity cannot be
compromised. The drawback is generally a lower
compression ratio, which is defined as the ratio of the
number of original uncompressed bits to the number of
compressed bits including overhead bits necessary for
signalling parameters.

The lossless Rice coder consists of two separate
functional parts: the preprocessor and the adaptive
entropy coder. Two of the factors contributing to the
performance measure in the coding bit rate
(bits/sample) of a lossless data compression technique
are the amount of correlation removed among data
samples in the preprocessing stage, and the coding
efficiency of the entropy coder. The function of the
preprocessor is to de-correlate data and reformat them
into non-negative integers with the preferred
probability distribution. The Adaptive Entropy Coder
(AEC) includes a code selection function, which
selects the coding option that performs best on the
current block of samples. The selection is made on the
basis of the number of bits that the selected option will
use to code the current block of samples. An ID bit
sequence specifies which option was used to encode
the accompanying set of codewords.

Tables 1 and 2 show the performance of the CCSDS
121.0 lossless compression algorithm. They contain,
respectively, the compression ratio and the execution
time measured on the SpW-RTC. The tests were
performed on the selected images available from [10].

Table 1. Compression ratios for test images using CCSDS
121.0 on the SpW-RTC

File ([width]x[height]x[bit depth]) Ratio

marstest.raw (512x512x8) 1,51

sun_spot.raw (512x512x12) 1,76

b1.raw (1024x1024x8) 2,18

solar.raw (1024x1024x12) 1,64

Table 2. Compression times for test images using CCSDS
121.0 on the SpW-RTC (ms)

 Black Image Random

512x512x8 619 1844 2202

512x512x12 637 2664 3540

1024x1024x8 2478 6454 8808

1024x1024x12 2548 10919 14160

It can be seen that black and random images provide a
best and worst-case for execution time, with the real
images having an intermediate value.

4. CCSDS 122.0 – IMAGE DATA
COMPRESSION

The Image Data Compression (IDC) recommendation
[12] has been designed for use in rockets, satellites, or
spacecraft. It is expected that the technique is
applicable to many types of instruments in such
equipment. Therefore this coding system design is
designed to satisfy all the memory and computation
restrictions of this kind of equipment.

The IDC standard is designed for both lossless and
lossy compression. When using lossless compression,
the original image can be recovered exactly, while if
lossy compression is used, approximations in different
stages produce some loss of information that cannot be
recovered even by transmitting the complete bit stream.
The IDC technique is designed for monoband
compression. The encoding process is divided in two
functional parts. First, a Discrete Wavelet Transform
(DWT) is performed in order to decorrelate the original
data. Then, the transformed data are rearranged in 8×8
blocks. Blocks are grouped in segments. The number
of blocks in a segment depends on the available
memory to store the segment. Finally, each segment is
independently encoded by the Bit Plane Encoder (BPE).

Fig. 1. IDC encoding process

Each 16 consecutive blocks within a segment are
grouped conforming a gaggle. Blocks in a gaggle are
entropy coded together. The number of blocks in a
segment is usually selected using two criteria: the strip
and the frame modes. The strip mode consists of
selecting the number of blocks in a segment as the
available blocks in a row. The frame mode consists of
encoding all the blocks of the image in one single
segment.

4.1 ESA's new algorithm implementation

Several implementations of the CCSDS 122.0 standard
are already available [13]. However, among other
problems, they typically require a lot of memory (at
least 4 bytes for each pixel on the original image), can
only read the input image from a file and output the
compressed data to another file. These design features
are not problematic when the software code is executed
on a workstation, but they make it hard to port the
application to a space platform.

Therefore, ESA has developed a new implementation
of the standard. It is written in C and supports all the
options defined in the CCSDS 122.0 standard. It uses
less memory than previous implementations, and
allows different input and output options such as files,
memory, or network interfaces.

Memory usage

ESA's implementation uses a memory-efficient DWT
calculation scheme, which significantly reduces the
algorithm’s memory requirements. We have
characterized the memory usage of the implementation,
and verified it using the Massif memory profiler. The
required memory is divided into four main components:

1. Discrete Wavelet Transform (DWT) buffers

2. Buffer to store the transformed coefficents

3. Bit Plane Encoder (BPE) buffers

4. Other memory for variables and temporary buffers

The total memory usage M of the implementation can
be calculated as

bytes
S

wM 429
2

*355
*207 (1)

where S is the segment size parameter and w is the
image width in pixels, including padding (the CCSDS
122.0 standard requires images to be padded so that
their width and height is a multiple of 8).

Note that this is a simplified formula, which only gives
an exact value for values of S which are multiples of
w/8. It is also a good approximation when S ≥ w/8. For
S ≤ w/8, the memory usage will always be larger than
that calculated using formula (1).

According to this, to compress an image of 512x512
pixels, the algorithm will require around 142Kb when a
segment size of 128 is used. For a segment size of 1024
it would require around 525Kb. The memory
requirements to compress a 1024x1024 image, using
the same segment sizes, are respectively 229Kb and
612Kb.

Although these memory requirements are particular to
our implementation, we believe that the value for any
future implementations would be similar, as further
optimizations of memory usage would most likely not
be possible without a significantly lower execution
speed.

Compression rate and efficiency

Table 3 shows the compression ratios obtained when
compressing the selected images from the CCSDS
library using our implementation of the CCSDS 122.0
standard. These values match very well with those
reported in [13].

Table 3. Compression ratios using CCSDS 122.0
implementation (original size divided by compressed size)

File ([width]x[height]x[bit depth]) Ratio

marstest.raw (512x512x8) 1,67

sun_spot.raw (512x512x12) 2,07

b1.raw (1024x1024x8) 2,38

solar.raw (1024x1024x12) 1,93

Table 4 shows the compression times achieved using
our implementation on the SpW-RTC, for both lossless
and lossy compression, and using black images,
random images and images from the CCSDS library.
The results shown are for the same images as in Table
3 (e.g. the image represented on the Image column of
the 512x512x12 line is sun_spot.raw).

Lossy compression was performed with a compression
rate of 0.8 bits/pixel of the original image, e.g. an
image with 512 by 512 pixels could have at most 512 *
512 * 0.8 bits.

Segment sizes of 64 and 128 were used for the
512x512 and 1024x1024 size images, respectively.

The Black and Random images provide a best and
worst-case for the lossless compression execution time,
with the realistic images having an intermediate value.
However, this does not apply when lossy compression
is performed. This happens because a fixed byte limit
for the compression stream is set, which makes the
algorithm halt when this limit is reached in each
segment. The Black images compress so well that they
do not reach this limit, making compression very fast.
However, both the Random and real images reach this

limit. The Random images have more entropy than the
real ones, which means that they generate more
information for each pixel of the original image,
reaching the byte limit faster and making the algorithm
stop sooner.

It can also be seen that the compression time is directly
proportional to the number of pixels; when the
resolution of the image doubles, the compression time
increases fourfold. Also, the compression time depends
on the image being compressed, as can be seen by the
relatively small difference in compression time
between the 512x512 images, in contrast with the large
one for the 1024 ones.

Table 4. Compression times of CCSDS 122.0
implementation on the SpW-RTC (ms)

 Black Image Random

Lossless

512x512x8 4462 11905 14068

512x512x12 4462 12941 17993

1024x1024x8 17872 37724 56092

1024x1024x12 17872 51280 71695

Lossy

512x512x8 5052 7024 5776

512x512x12 5052 7494 5616

1024x1024x8 20247 27338 23375

1024x1024x12 20247 28051 22399

5. LOSSLESS IMAGE COMPRESSION
COMPARISON

The CCSDS 122.0 standard allows both lossless and
lossy compression of images. However, lossless image
compression can also be performed using the CCSDS
121.0 general purpose lossless compression algorithm.
This section compares these two alternatives, using
images from the CCSDS image library for test runs
performed on the SpW-RTC.

Table 5. Comparison between CCSDS 121.0 and 122.0 for
lossless compression

 Ratio Time (seconds)

 121.0 122.0 121.0 122.0

marstest.raw 1,51 1,67 1,8 11,9

sun_spot.raw 1,76 2,07 2,7 12,9

b1.raw 2,18 2,38 6,5 37,7

solar.raw 1,64 1,93 11,9 51,3

Table 5 shows the compression ratio and time for the
CCSDS 121.0 and 122.0 algorithms. Although CCSDS
122.0 can achieve better compression ratios than 121.0,
the latter is executed 5 to 7 times faster. It is therefore
recommended to perform a trade-off between
compression rate and execution speed for each
particular application.

6. HYPER/MULTISPECTRAL DATA
COMPRESSION

Compression of hyperspectral images is a field of
growing importance. New sensors are generating
increasing amounts of data, especially in the spectral
dimension, as scenes are imaged at a very fine
wavelength resolution. This is particularly useful in
terms of potential applications, as spectral features
allow extracting important information from the data.
However, it also makes the size of the acquired datasets
very large. Since many sensor platforms, especially
spaceborne ones, cannot store all the data but need to
transmit them to a ground station, there is a problem of
reducing the data volume in order to download all the
acquired data.

In the following we describe a compression algorithm
for lossless and near-lossless onboard compression of
hyperspectral images [14]. In 2007, CCSDS created the
Multispectral and Hyperspectral Data Compression
(MHDC) Working Group [15] in order to design a new
recommended standard for multi- and hyperspectral
images. The algorithm described in the following
paragraphs is a candidate for standardization.

Beyond good compression performance, onboard com-
pression entails the following requirements:

• Low encoder complexity

Since hyperspectral (and ultraspectral) sensors can
generate very high data rates, it is of paramount im-
portance that the encoder has low-complexity, in or-
der to be able to operate in real time.

• �Error-resilience

Algorithms should be capable of contain the effect of
bit-flippings or packet losses in the compressed file.
These errors typically occur because of noise on the
communication channel. Traditional compression al-
gorithms can break down completely upon a single bit
error in the data, preventing from decoding the re-
mainder of the scene after the error. On the other
hand, algorithms such as JPEG 2000 can use sophisti-
cated tools to limit the scope of errors at the
codestream level. However, there is a compression
penalty to be paid for using these techniques.

• �Hardware friendliness

Since onboard compression algorithms for high data
rates are typically implemented on FPGA or ASIC
platforms, the algorithm design needs to support sim-
ple hardware implementation, i.e., it must be able to
operate using integer arithmetic, fit into a relatively
small FPGA, and use the available resources effec-
tively, possibly avoiding the need for external mem-
ory. Moreover, it is desirable that the algorithm can be
parallelized in order to speed up the compression
process for high data-rate sensors.

Here we describe a compression algorithm that aims at
fulfilling the criteria above. The algorithm performs
lossless and near-lossless compression with very low
complexity. The predictor has low complexity, as it
computes a single optimal predictor for each 16x16
block of input samples. Working on 16x16 blocks, the
predictor performs data partitioning, in that any 16x16
block can be decoded without reference to any other
16x16 block in different spatial locations in other
bands. Thus, while there is a performance loss for
working on a block-by-block basis, this is small as
opposed to using more sophisticated tools.

The entropy coding stage is based on Golomb and
Golomb power-of-two codes, which are known to be a
good low-complexity alternative to the more powerful
arithmetic codes. Moreover, a quantizer can optionally
be inserted in the prediction loop so as to achieve near-
lossless compression. The performance of the
algorithm, for both lossless and near-lossless
compression, can be improved by means of band
reordering

Regarding compression performances, results for
AVIRIS images are shown in the next Table. We
compare the proposed algorithm using Golomb codes
and GPO2 codes, but without band reordering, the
LUT algorithm [16] and the FL algorithm [17]. As can
be seen the proposed algorithm is significantly better
than LUT, and almost as good as FL, but with lower
complexity. This is a very good result, as FL has a very
competitive performance. For comparison, 3D-CALIC
using a BSQ format achieves 6.41, 6.23 and 5.62 bpp
on sc0, sc3 and sc10 respectively. LAIS-LUT would
score an average of 6.50 bpp, which is significantly
larger than the proposed algorithm. The use of GPO2
codes does not significantly reduce performance.

Table 6. Performances of multispectral compression
algorithms (bits per pixel)

 Proposed
(Golomb)

Proposed
(GPO2)

LUT FL

sc0 6.44 6.45 7.14 6.23

sc3 6.29 6.30 6.91 6.10

sc10 5.61 5.62 6.26 5.65

sc11 6.02 6.04 6.69 5.86

sc18 6.38 6.39 7.20 6.32

Average 6.15 6.16 6.84 6.03

A rapid prototyping hardware implementation of the
lossless compression algorithm has been performed.
The design and modelling phase of the algorithm has
been supported by the Matlab/Simulink Xilinx system
generator tool, a rapid prototyping environment for the
design and implementation of algorithms in FPGAs.
The algorithm has been decomposed in elementary
functional blocks communicating with ping-pong buff-
ers. Each functional block is in charge of executing the
macro computation, and the parallel execution of the
functional block in FPGA hardware is exploited for
obtaining very high data throughput.

VHDL code has been automatically generated starting
from the rapid prototyping tool for two Xilinx FPGA
components. The selected FPGAs components are also
available in radiation tolerant versions, which is par-
ticularly interesting for space applications. Further-
more, a second implementation step has been per-
formed by using a high-level C- to VHDL converter
tool applying the same approach used in the modelling
phase. Again, VHDL has code has been generated and
FPGA algorithm resources have been computed.

Table 7. FPGA resource requirements for proposed
multispectral data compression algorithm

Device Xilinx
xqr4vlx200

Xilinx
xq2v3000

Used LUT 10306 (5%) 10248 (35%)

Ram 16s 21 of 336 (6%) 21 of 96 (22%)

Mult18x18s 9 of 96 (9%)

DSP48 9 of 96 (9%)

Max freq (MHz) 81 79

Throughput
(Msamples/sec)

70 69

Table 7 summarizes the data of the requested resources
for the algorithm implementation in FPGA.

7. PACKET DATA COMPRESSION

Housekeeping or science data from on-board systems
or payloads usually consists of packets that contain
standardized packet headers and a set of parameters
supporting monitoring and diagnosis of the space
system’s functions. Typically the size and structure of
the data packets is fixed, and information is presented
in standard data formats such as bytes, 16 bit integers,
32 bit integers or floating point numbers etc. Data files
consisting of such packets can be compressed
efficiently with standardized compression algorithms in
particular if some suitable pre-processing steps are
applied. In this chapter, we present some simple types
of packet data pre-processing as well as the
performance gains obtained on typical test data files.

7.1 Data Pre-processing

The purpose of data preprocessing is the reversible
re-arrangement of data for optimizing the performance
of the following data compression step. Many data
compression algorithms, including the ones presented
in this paper, attempt to exploit the similarity in a
sequence of numbers to reduce the number of data bits
needed for their representation. Any re-arrangement
that allows to reversibly place similar numbers next to
each other will therefore improve the compressibility
of the data series. One example is a series of 16-bit
numbers where the sequence of MSB and LSB is
different to the representation used by the compression
algorithm. If MSB and LSB are swapped, compression
will improve dramatically. Another example is data
sampled in sequence from different channels of a
measurement system. While the data from different
channels can be expected to exhibit significant
differences, the data from one channel often consists of
data elements that show much less deviation. A re-
arrangement that groups data elements from individual
channels will therefore improve data compressibility.
For data sets that consist of an integer number of
constant size records this can be done by applying a
Transposition, a re-arrangement operation which is
equivalent to the well-known matrix operation.

7.2 Transposition of fixed-size / fixed-structure data
packages

A Transposition can be applied to a set of data
consisting of N records of size M:

for i=1:N

 for k=1:M

 output((k-1)*N+i)=data((i-1)*M+k);

 end

end

It creates a new set of output data that consists of a
sequence of all first elements of all original records,
then all second elements of the original records etc. A

transposition can be applied on various levels. Typical
possibilities include bit-level, byte-level, and 16- or 32
bit word level; in most cases choosing a level that
corresponds to the input data representation gives the
best results for the subsequent compression step. In this
work we have restricted ourselves to transposition on
byte and word level which is adequate for subsequent
CCSDS RICE compression. A wider range of
combinations of transposition type and compression
algorithm has been evaluated in [5].

If the data records consist of inhomogeneous data
elements (such as a 7-byte header followed by a
sequence of 32 bit numbers) padding can help to
improve data compression performance. In the
example, adding 1 padding byte to the header will
allow selecting a transposition on byte level, 16-bit or
32-bit word level, instead of byte level only for the
unpadded data records, and open up more possibilities
for optimizing compression performance.

7.3 Compression Test Results

Data compression tests have been performed on files
consisting of fixed size and fixed structure data packets.
The chosen compression method was the lossless RICE
compression algorithm.

UVenus Express (VEX) Orbiter Magnetometer HK data

This instrument generates HK data packets with a size
of 98 bytes. Most data elements in the packets are 16bit
integer numbers. Compression performance on the
unprocessed data was poor (~ factor 1.2) due to the
packet content which consists of HK parameters from
uncorrelated sources.

0

2

4

6

8

10

12

14

16

5 10 50 100 500 1000 5000
Packets

C
o

m
p

re
s

s
io

n
 r

a
ti

o
 (

R
IC

E
 1

6
-6

4
)

Original Data File Transposed Data File (16-bit)

A transposition on 16-bit word level was performed
before compressing the resulting dataset. In order to
assess the impact of file size on the achievable
compression performance, a number of files were
generated with different numbers of packets. The
compression ratio after transposition improved to a
factor of 2 (for a file containing 5 packets) to ~13.9 for

a file consisting of 5000 packets. The results are
illustrated in Figure 2.

UExoMars WISDOM data

A second set of instrument data used for tests was
science and housekeeping data for the ExoMars
WISDOM Ground Penetrating Radar [18]. This
instrument produces packets of 5151 bytes consisting
of 143 bytes of header and housekeeping data plus
1001 32-bit words of science data. Compressibility was
evaluated on packet level. The 32-bit parameters
represent IEEE-754 floating point numbers containing
1 sign bit, 8 exponent bits, and 23 fraction bits. RICE
compression of the original packets leads to a poor
compression ratio of only 1.04.

The word size dominating most of the packet structure
suggests to apply a transposition on 32-bit word, 16bit
word or byte level before applying the RICE
compression. Compression tests for all transposition
levels show that transposition on byte level is best
suited to exploit the redundancy contained in
subsequent parameters, and a compression ratio of
~2.78 is achieved on average for a test data set of 18
packets. This result is on the same level with the
universal, but much more complex, compression
algorithms implemented in the popular ZIP / WinZIP
software.

These results show that lossless CCSDS compatible
compression can, in combination with simple pre-
processing steps such as padding and transposition,
significantly improve the compression results
achievable for fixed size & fixed structure telemetry
data files such as typical spacecraft HK data.

8. THE WHITEDWARF DATA COMPRESSION
EVALUATION TOOL

WhiteDwarf is an application that supports the
evaluation of compression algorithms by the
prospective users of those algorithms. It allows users to
compress and decompress their own data files, and
optimize algorithm choice and compression parameters
by testing with representative user-selected datasets. It
also allows users to perform pre-processing functions
on their files.

Using this tool, users can test how different
combinations of algorithm and compression parameter
perform when compressing samples of their own data.
These combinations may be stored, exported and
imported. The generation of test reports is also
supported.

Fig. 2. VEX magnetometer HK data compression ratio

WhiteDwarf currently supports the CCSDS 121.0,
CCSDS 122.0 and DEFLATE algorithms. Additional
compression algorithms will be added in the future
once the related standardization processes are
completed.

9. CONCLUSIONS

Data compression is an important technology with
many applications in space projects. ESA is, in
cooperation with partner agencies, actively supporting
the development and standardization of selected
algorithms that are particularly suitable for space
applications due to high performance and low resource
requirements. Algorithms for lossless generic data
compression, lossy and lossless image data
compression, and for multispectral data compression
are available or under standardization.

Performance tests on selected CCSDS test data have
been performed using a typical space qualified 50 MHz
LEON2 based processor.

For generic lossless CCSDS 121.0 data compression
typical performances of ~6.5 to 10.9 sec/Msample and
compression ratios of ~1.5 to 2.2 have been observed.

A new ESA implementation of the CCSDS 122.0
image compression algorithm with significantly
reduced resource requirements has been implemented.
Typical performances for lossless IDC are ratios of
~1.7 to 2.4 and execution times of ~37.7 to 51.8
sec/Msample. Compression times for lossy IDC (at 0.8
bits per pixel, corresponding to a compression ratio of
10 or 15 for the selected images) ranged from ~27.3 to
30 sec/Msample.

For multispectral image compression, standardization
of algorithms is underway, and one of the foreseen
algorithms has been presented. High compression
performance and low complexity / implementation

requirements in both software and hardware are
important characteristics of the proposed algorithm.

For the compression of packetized data, in particular
for fixed size / fixed format housekeeping data, we
have shown that the combination of simple pre-
processing steps and lossless CCSDS 121.0 data
compression allows a significant reduction of the data
volume. Lossless compression factors of ~2 up to ~14
were achieved depending on the data structure and the
number of packets in a data file. It is recommended to
use similar techniques for platform and instrument HK
data compression on missions where limited bandwidth
is available.

Finally, ESA has developed a new application software,
WhiteDwarf, which allows the independent evaluation
of ESA-supported data compression algorithms by
prospective users. It provides implementations of
several algorithms, as well as options and tools for data
preprocessing, data manipulation, and reporting. The
application is available to users via the On-board
Payload Data Processing section (TEC-EDP) at
ESA/ESTEC

Fig. 2. The WhiteDwarf application's graphical user
interface

10. REFERENCES

1. Carlton et al., A real-time Data Compression system
for Apollo TCM Telemetry, Johns Hopkins University,
Technical Memo, December 1969

2. Mars Express – the Scientific Payload, ESA-SP
1240, August 2004

3. Venus Express Payload and Mission, ESA-SP 1295,
November 2007

4. Huygens Science Payload and Mission, ESA-SP
1177, August 1997

5. Evans D. et al., Housekeeping Data: Can you afford
not to compress it?, SpaceOps Conference, 2010

6. CCSDS website at
Uhttp://public.ccsds.org/ default.aspx

7. ESA TEC-EDP website at
Uhttp://www.esa.int/TEC/OBDP/

8. SpaceWire RTC Device, ESA website at
Uhttp://spacewire.esa.int/content/Devices/RTC.php

9. Ilstad J. et al., SpaceWire Remote Terminal Control-
ler, DASIA 2008

10. Consultative Committee for Space Data Systems,
CCSDS Test Images.
Uhttp://cwe.ccsds.org/sls/docs/sls-dc/

11. Consultative Committee for Space Data Systems,
Lossless Data Compression, May 1997. ser. Blue
Book, CCSDS 121.0-B-1.
Uhttp://public.ccsds.org/publications/archive/
121x0b1c2.pdf

12. Consultative Committee for Space Data Systems,
Image Data Compression, Nov. 2005. ser. Blue Book,
CCSDS 122.0-B-1.
HUhttp://public.ccsds.org/publications/archive/122x0b1c2
.pdfU

13. Consultative Committee for Space Data Systems,
Image Data Compression CCSDS 120.1-G-1, Jun.
2007, Washington, DC: CCSDS. ser. Green Book.
HUhttp://public.ccsds.org/publications/archive/120x1g1e1
.pdfU

14. Abrardo A., Barni M., Bertoli A., Grimaldi R.,
Magli E., Vitulli R., Low-complexity algorithm design
and hardware implementation for onboard
hyperspectral image compression, Journal of Applied
Remote Sensing, 2010.

15. Consultative Committee for Space Data Systems,
Multispectral Hyperspectral Data Compression
Working Group.
HUhttp://cwe.ccsds.org/sls/docs/Forms/AllItems.aspxU

16. Mielikainen J. and Toivanen P., Clustered DPCM
for the lossless compression of hyperspectral images,
IEEE Transactions on Geoscience and Remote Sensing
41, 2943–2946 (2003).

17. Kiely A. and Klimesh M., Exploiting calibration-
induced artifacts in lossless compression of hyperspec-
tral imagery, IEEE Transactions on Geoscience and
Remote Sensing, to appear 2009.
HUhttp://compression.jpl.nasa.gov/hyperspectral/U

18. Trautner R., Data Compression for ExoMars
WISDOM Ground Penetrating Radar Science and
Housekeeping Data, ESA Technical Note TEC-
EDP/2009.59/RT, 2010

