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ABSTRACT 

For all types of space missions, the available 
bandwidth for the transmission of data back to Earth is 
an important constraint with significant impact on 
vehicle design, onboard resources, and mission 
operations. The efficient compression of science and 
housekeeping data allows maximizing the utilization of 
available bandwidth and onboard resources. 

While data compression is traditionally used for 
science payload data, the compression of spacecraft 
housekeeping data is becoming increasingly attractive 
in particular for exploration and science missions that 
have significant bandwidth constraints. 

We present a summary of present and upcoming 
standardized data compression algorithms for on-board 
implementation, including ESA's latest related 
developments such as a new implementation of the 
CCSDS-122.0 (image data compression) standard, 
performant multispectral data compression algorithms, 
and research on simple pre-processing steps which 
improve the compression performance in particular for 
packetized data such as spacecraft housekeeping data. 
Test results for various compression algorithms are 
presented, and a new software tool is introduced which 
supports the evaluation of standardized data 
compression algorithms by industry and by payload 
teams. 

1. INTRODUCTION 

The reduction of redundancy / information content in 
data by means of data compression is an important 
technology, with widespread use in many application 
fields.  Space missions were among the early adopters 
of data compression, with applications already 
implemented in the days of the Apollo program [1]. 

Due to the associated reduction of on-board data 
storage capacity and downlink bandwidth requirements, 
data compression is traditionally used in particular for 
science payload data. Recent European space missions 
like Huygens [2], Mars Express [3], or Venus Express 
[4] have implemented data compression for high 
bandwidth type instruments such as cameras and 
spectrometers. However, none of these missions used 

compression for instrument and spacecraft house-
keeping data mainly due to conservatism in 
engineering approaches. This area is addressed by 
recent work [5] and it is expected that compression for 
platform data will be more common in the future. 

Data compression can be implemented in hardware or 
software. The decision on the implementation platform, 
and the selection of a suitable algorithm, is based on a 
tradeoff of a number of factors, such as: 
 

• Compression performance 

• Lossy versus lossless compression 

• Associated hardware requirements 

• Associated software requirements 

• Impact on system complexity 

• Impact on reliability, including data integrity 

• Compatibility with TM and ground systems 

• Implementation cost 
 

In order to minimize the added complexity needed for 
the implementation, algorithms are required that 
provide high compression performance with minimum 
consumption of on-board resources. All compressed 
data needs to be as robust as possible for minimizing 
the propagation of errors in the data. The impact on 
cost, reliability and system compatibility can be 
significantly reduced by standardization and re-use of 
efficient algorithms. 

ESA has, in cooperation with major space agencies, 
supported the development and standardization of 
efficient data compression algorithms that provide high 
performance as well as low resource requirements. The 
standardization of algorithms supports the public 
availability of high quality documentation and the 
establishment of a broad user community. Algorithm 
specifications, test data, implementation guidelines and 
some software code are available via the services 
provided by CCSDS [6] and its members including 
ESA [7]. 

 
 
 
 
 



In the following chapters, data compression test 
hardware and test data sets are described. CCSDS 
standardized data compression algorithms and a 
standardization candidate for hyper/multispectral data 
compression are briefly introduced, and ESA 
implementations of the algorithms are presented, 
together with performance test results on a state of the 
art space qualified CPU [8]. The compression 
performance, memory requirements, processing 
efficiency, and error resilience are addressed. Based on 
test results, recommendations on the utilization of the 
individual algorithms are made. 

A selection of simple pre-processing steps for packet 
telemetry data is introduced which allows achieving 
significant performance gains in combination with 
standardized compression algorithms. Test results for 
typical data sets are presented. 

Finally, a new ESA software tool for the evaluation of 
standardized data compression algorithms by industry 
and by payload teams is introduced. 

2. DATA COMPRESSION TEST HARDWARE 
AND DATA 

The efficiency tests of the CCSDS 121.0 and 122.0 
implementations were performed using a development 
board based on a SpaceWire Remote Terminal 
Controller (SpW-RTC) [8], [9]. This device includes an 
embedded LEON2 microprocessor, and a range of 
standard interfaces and resources (UARTs, timers, 
general purpose input output). The key specifications 
can be summarized as follows: 
 

• RTC ASIC with a 50 MHz core clock speed 

• 34 Dhrystone MIPS 

• 16 Mbyte RAM, 16 Mbyte PROM, EEPROM 

• SpW, CAN bus and serial interfaces 
 

This computer board is representative to many 
contemporary on-board computers in terms of CPU 
architecture and performance. 

Two types of images were used on these tests: images 
from the CCSDS image library [10] and completely 
black and random images, which provide a best and 
worst case for compressibility.  

Four versions of black and random images were used, 
with different dimension and representation: 
 

• 512x512x8 (512 by 512 pixels and 8 bits per pixel) 

• 512x512x12 

• 1024x1024x8 

• 1024x1024x12 

The four images selected from the CCSDS library have 
dimensions identical to the black and random images. 
Their filenames in the CCSDS test dataset are 
marstest.raw, sun_spot.raw, b1.raw and solar.raw. 

3. CCSDS 121.0 – GENERAL PURPOSE 
LOSSLESS DATA COMPRESSION 

The CCSDS 121.0 [11] standard is based on Rice 
coding, which was developed by Robert F. Rice at 
NASA. A lossless source coding technique preserves 
source data accuracy and removes redundancy in the 
data source. In the decoding process, the original data 
can be reconstructed from the compressed data by 
restoring the removed redundancy; the decompression 
process adds no distortion. This technique is 
particularly useful when data integrity cannot be 
compromised. The drawback is generally a lower 
compression ratio, which is defined as the ratio of the 
number of original uncompressed bits to the number of 
compressed bits including overhead bits necessary for 
signalling parameters. 

The lossless Rice coder consists of two separate 
functional parts: the preprocessor and the adaptive 
entropy coder. Two of the factors contributing to the 
performance measure in the coding bit rate 
(bits/sample) of a lossless data compression technique 
are the amount of correlation removed among data 
samples in the preprocessing stage, and the coding 
efficiency of the entropy coder. The function of the 
preprocessor is to de-correlate data and reformat them 
into non-negative integers with the preferred 
probability distribution. The Adaptive Entropy Coder 
(AEC) includes a code selection function, which 
selects the coding option that performs best on the 
current block of samples. The selection is made on the 
basis of the number of bits that the selected option will 
use to code the current block of samples. An ID bit 
sequence specifies which option was used to encode 
the accompanying set of codewords. 

Tables 1 and 2 show the performance of the CCSDS 
121.0 lossless compression algorithm. They contain, 
respectively, the compression ratio and the execution 
time measured on the SpW-RTC. The tests were 
performed on the selected images available from [10]. 

Table 1. Compression ratios for test images using CCSDS 
121.0 on the SpW-RTC 

 

File ([width]x[height]x[bit depth]) Ratio 

marstest.raw (512x512x8) 1,51 

sun_spot.raw (512x512x12) 1,76 

b1.raw (1024x1024x8) 2,18 

solar.raw (1024x1024x12) 1,64 



Table 2. Compression times for test images using CCSDS 
121.0 on the SpW-RTC (ms) 

 

 Black Image Random 

512x512x8 619 1844 2202 

512x512x12 637 2664 3540 

1024x1024x8 2478 6454 8808 

1024x1024x12 2548 10919 14160 

 

It can be seen that black and random images provide a 
best and worst-case for execution time, with the real 
images having an intermediate value. 

4. CCSDS 122.0 – IMAGE DATA 
COMPRESSION 

The Image Data Compression (IDC) recommendation 
[12] has been designed for use in rockets, satellites, or 
spacecraft. It is expected that the technique is 
applicable to many types of instruments in such 
equipment. Therefore this coding system design is 
designed to satisfy all the memory and computation 
restrictions of this kind of equipment. 

The IDC standard is designed for both lossless and 
lossy compression. When using lossless compression, 
the original image can be recovered exactly, while if 
lossy compression is used, approximations in different 
stages produce some loss of information that cannot be 
recovered even by transmitting the complete bit stream. 
The IDC technique is designed for monoband 
compression. The encoding process is divided in two 
functional parts. First, a Discrete Wavelet Transform 
(DWT) is performed in order to decorrelate the original 
data. Then, the transformed data are rearranged in 8×8 
blocks. Blocks are grouped in segments. The number 
of blocks in a segment depends on the available 
memory to store the segment. Finally, each segment is 
independently encoded by the Bit Plane Encoder (BPE).  

 

 

Fig. 1. IDC encoding process 

 

Each 16 consecutive blocks within a segment are 
grouped conforming a gaggle. Blocks in a gaggle are 
entropy coded together. The number of blocks in a 
segment is usually selected using two criteria: the strip 
and the frame modes. The strip mode consists of 
selecting the number of blocks in a segment as the 
available blocks in a row. The frame mode consists of 
encoding all the blocks of the image in one single 
segment. 

4.1 ESA's new algorithm implementation 

Several implementations of the CCSDS 122.0 standard 
are already available [13]. However, among other 
problems, they typically require a lot of memory (at 
least 4 bytes for each pixel on the original image), can 
only read the input image from a file and output the 
compressed data to another file. These design features 
are not problematic when the software code is executed 
on a workstation, but they make it hard to port the 
application to a space platform. 

Therefore, ESA has developed a new implementation 
of the standard. It is written in C and supports all the 
options defined in the CCSDS 122.0 standard. It uses 
less memory than previous implementations, and 
allows different input and output options such as files, 
memory, or network interfaces. 

Memory usage 

ESA's implementation uses a memory-efficient DWT 
calculation scheme, which significantly reduces the 
algorithm’s memory requirements. We have 
characterized the memory usage of the implementation, 
and verified it using the Massif memory profiler. The 
required memory is divided into four main components: 
 

1. Discrete Wavelet Transform (DWT) buffers 

2. Buffer to store the transformed coefficents 

3. Bit Plane Encoder (BPE) buffers 

4. Other memory for variables and temporary buffers 
 

The total memory usage M of the implementation can 
be calculated as 

bytes
S

wM 429
2

*355
*207   (1) 

where S is the segment size parameter and w is the 
image width in pixels, including padding (the CCSDS 
122.0 standard requires images to be padded so that 
their width and height is a multiple of 8). 

Note that this is a simplified formula, which only gives 
an exact value for values of S which are multiples of 
w/8. It is also a good approximation when S ≥ w/8. For 
S ≤ w/8, the memory usage will always be larger than 
that calculated using formula (1). 



According to this, to compress an image of 512x512 
pixels, the algorithm will require around 142Kb when a 
segment size of 128 is used. For a segment size of 1024 
it would require around 525Kb. The memory 
requirements to compress a 1024x1024 image, using 
the same segment sizes, are respectively 229Kb and 
612Kb. 

Although these memory requirements are particular to 
our implementation, we believe that the value for any 
future implementations would be similar, as further 
optimizations of memory usage would most likely not 
be possible without a significantly lower execution 
speed. 

Compression rate and efficiency 

Table 3 shows the compression ratios obtained when 
compressing the selected images from the CCSDS 
library using our implementation of the CCSDS 122.0 
standard. These values match very well with those 
reported in [13]. 

Table 3. Compression ratios using CCSDS 122.0 
implementation (original size divided by compressed size) 
 

File ([width]x[height]x[bit depth]) Ratio 

marstest.raw (512x512x8) 1,67 

sun_spot.raw (512x512x12) 2,07 

b1.raw (1024x1024x8) 2,38 

solar.raw (1024x1024x12) 1,93 

 

Table 4 shows the compression times achieved using 
our implementation on the SpW-RTC, for both lossless 
and lossy compression, and using black images, 
random images and images from the CCSDS library. 
The results shown are for the same images as in Table 
3 (e.g. the image represented on the Image column of 
the 512x512x12 line is sun_spot.raw). 

Lossy compression was performed with a compression 
rate of 0.8 bits/pixel of the original image, e.g. an 
image with 512 by 512 pixels could have at most 512 * 
512 * 0.8 bits. 

Segment sizes of 64 and 128 were used for the 
512x512 and 1024x1024 size images, respectively. 

The Black and Random images provide a best and 
worst-case for the lossless compression execution time, 
with the realistic images having an intermediate value. 
However, this does not apply when lossy compression 
is performed. This happens because a fixed byte limit 
for the compression stream is set, which makes the 
algorithm halt when this limit is reached in each 
segment. The Black images compress so well that they 
do not reach this limit, making compression very fast. 
However, both the Random and real images reach this 

limit. The Random images have more entropy than the 
real ones, which means that they generate more 
information for each pixel of the original image, 
reaching the byte limit faster and making the algorithm 
stop sooner.  

It can also be seen that the compression time is directly 
proportional to the number of pixels; when the 
resolution of the image doubles, the compression time 
increases fourfold. Also, the compression time depends 
on the image being compressed, as can be seen by the 
relatively small difference in compression time 
between the 512x512 images, in contrast with the large 
one for the 1024 ones. 

Table 4. Compression times of CCSDS 122.0 
implementation on the SpW-RTC (ms) 

 

 Black Image Random 

Lossless 

512x512x8 4462 11905 14068 

512x512x12 4462 12941 17993 

1024x1024x8 17872 37724 56092 

1024x1024x12 17872 51280 71695 

Lossy 

512x512x8 5052 7024 5776 

512x512x12 5052 7494 5616 

1024x1024x8 20247 27338 23375 

1024x1024x12 20247 28051 22399 

 

5. LOSSLESS IMAGE COMPRESSION 
COMPARISON 

The CCSDS 122.0 standard allows both lossless and 
lossy compression of images. However, lossless image 
compression can also be performed using the CCSDS 
121.0 general purpose lossless compression algorithm. 
This section compares these two alternatives, using 
images from the CCSDS image library for test runs 
performed on the SpW-RTC. 

Table 5. Comparison between CCSDS 121.0 and 122.0 for 
lossless compression 

 

 Ratio Time (seconds) 

 121.0 122.0 121.0 122.0 

marstest.raw 1,51 1,67 1,8 11,9 

sun_spot.raw 1,76 2,07 2,7 12,9 

b1.raw 2,18 2,38 6,5 37,7 

solar.raw 1,64 1,93 11,9 51,3 

 



Table 5 shows the compression ratio and time for the 
CCSDS 121.0 and 122.0 algorithms. Although CCSDS 
122.0 can achieve better compression ratios than 121.0, 
the latter is executed 5 to 7 times faster. It is therefore 
recommended to perform a trade-off between 
compression rate and execution speed for each 
particular application. 

6. HYPER/MULTISPECTRAL DATA 
COMPRESSION 

Compression of hyperspectral images is a field of 
growing importance. New sensors are generating 
increasing amounts of data, especially in the spectral 
dimension, as scenes are imaged at a very fine 
wavelength resolution. This is particularly useful in 
terms of potential applications, as spectral features 
allow extracting important information from the data. 
However, it also makes the size of the acquired datasets 
very large. Since many sensor platforms, especially 
spaceborne ones, cannot store all the data but need to 
transmit them to a ground station, there is a problem of 
reducing the data volume in order to download all the 
acquired data. 

In the following we describe a compression algorithm 
for lossless and near-lossless onboard compression of 
hyperspectral images [14]. In 2007, CCSDS created the 
Multispectral and Hyperspectral Data Compression 
(MHDC) Working Group [15] in order to design a new 
recommended standard for multi- and hyperspectral 
images. The algorithm described in the following 
paragraphs is a candidate for standardization. 

Beyond good compression performance, onboard com-
pression entails the following requirements: 

• Low encoder complexity 

Since hyperspectral (and ultraspectral) sensors can 
generate very high data rates, it is of paramount im-
portance that the encoder has low-complexity, in or-
der to be able to operate in real time.   

• �Error-resilience 

Algorithms should be capable of contain the effect of 
bit-flippings or packet losses in the compressed file. 
These errors typically occur because of noise on the 
communication channel. Traditional compression al-
gorithms can break down completely upon a single bit 
error in the data, preventing from decoding the re-
mainder of the scene after the error. On the other 
hand, algorithms such as JPEG 2000 can use sophisti-
cated tools to limit the scope of errors at the 
codestream level. However, there is a compression 
penalty to be paid for using these techniques.  

 

 

• �Hardware friendliness 

Since onboard compression algorithms for high data 
rates are typically implemented on FPGA or ASIC 
platforms, the algorithm design needs to support sim-
ple hardware implementation, i.e., it must be able to 
operate using integer arithmetic, fit into a relatively 
small FPGA, and use the available resources effec-
tively, possibly avoiding the need for external mem-
ory. Moreover, it is desirable that the algorithm can be 
parallelized in order to speed up the compression 
process for high data-rate sensors. 
 

Here we describe a compression algorithm that aims at 
fulfilling the criteria above. The algorithm performs 
lossless and near-lossless compression with very low 
complexity. The predictor has low complexity, as it 
computes a single optimal predictor for each 16x16 
block of input samples. Working on 16x16 blocks, the 
predictor performs data partitioning, in that any 16x16 
block can be decoded without reference to any other 
16x16 block in different spatial locations in other 
bands. Thus, while there is a performance loss for 
working on a block-by-block basis, this is small as 
opposed to using more sophisticated tools. 

The entropy coding stage is based on Golomb and 
Golomb power-of-two codes, which are known to be a 
good low-complexity alternative to the more powerful 
arithmetic codes. Moreover, a quantizer can optionally 
be inserted in the prediction loop so as to achieve near-
lossless compression. The performance of the 
algorithm, for both lossless and near-lossless 
compression, can be improved by means of band 
reordering 

Regarding compression performances, results for 
AVIRIS images are shown in the next Table. We 
compare the proposed algorithm using Golomb codes 
and GPO2 codes, but without band reordering, the 
LUT algorithm [16] and the FL algorithm [17]. As can 
be seen the proposed algorithm is significantly better 
than LUT, and almost as good as FL, but with lower 
complexity. This is a very good result, as FL has a very 
competitive performance. For comparison, 3D-CALIC 
using a BSQ format achieves 6.41, 6.23 and 5.62 bpp 
on sc0, sc3 and sc10 respectively. LAIS-LUT would 
score an average of 6.50 bpp, which is significantly 
larger than the proposed algorithm. The use of GPO2 
codes does not significantly reduce performance. 

 

 

 

 

 



Table 6. Performances of multispectral compression 
algorithms (bits per pixel) 

 

 Proposed 
(Golomb) 

Proposed 
(GPO2) 

LUT FL 

sc0 6.44 6.45 7.14 6.23 

sc3 6.29 6.30 6.91 6.10 

sc10 5.61 5.62 6.26 5.65 

sc11 6.02 6.04 6.69 5.86 

sc18 6.38 6.39 7.20 6.32 

Average 6.15 6.16 6.84 6.03 

 

A rapid prototyping hardware implementation of the 
lossless compression algorithm has been performed. 
The design and modelling phase of the algorithm has 
been supported by the Matlab/Simulink Xilinx system 
generator tool, a rapid prototyping environment for the 
design and implementation of algorithms in FPGAs. 
The algorithm has been decomposed in elementary 
functional blocks communicating with ping-pong buff-
ers. Each functional block is in charge of executing the 
macro computation, and the parallel execution of the 
functional block in FPGA hardware is exploited for 
obtaining very high data throughput. 

VHDL code has been automatically generated starting 
from the rapid prototyping tool for two Xilinx FPGA 
components. The selected FPGAs components are also 
available in radiation tolerant versions, which is par-
ticularly interesting for space applications. Further-
more, a second implementation step has been per-
formed by using a high-level C- to VHDL converter 
tool applying the same approach used in the modelling 
phase. Again, VHDL has code has been generated and 
FPGA algorithm resources have been computed.  

Table 7. FPGA resource requirements for proposed 
multispectral data compression algorithm 

 

Device Xilinx 
xqr4vlx200 

Xilinx 
xq2v3000 

Used LUT 10306 (5%) 10248 (35%) 

Ram 16s 21 of 336 (6%) 21 of 96 (22%) 

Mult18x18s  9 of 96 (9%) 

DSP48 9 of 96 (9%)  

Max freq (MHz) 81 79 

Throughput 
(Msamples/sec) 

70 69 

 

Table 7 summarizes the data of the requested resources 
for the algorithm implementation in FPGA. 

 

7. PACKET DATA COMPRESSION 

Housekeeping or science data from on-board systems 
or payloads usually consists of packets that contain 
standardized packet headers and a set of parameters 
supporting monitoring and diagnosis of the space 
system’s functions. Typically the size and structure of 
the data packets is fixed, and information is presented 
in standard data formats such as bytes, 16 bit integers, 
32 bit integers or floating point numbers etc. Data files 
consisting of such packets can be compressed 
efficiently with standardized compression algorithms in 
particular if some suitable pre-processing steps are 
applied.  In this chapter, we present some simple types 
of packet data pre-processing as well as the 
performance gains obtained on typical test data files. 

7.1 Data Pre-processing 

The purpose of data preprocessing is the reversible 
re-arrangement of data for optimizing the performance 
of the following data compression step. Many data 
compression algorithms, including the ones presented 
in this paper, attempt to exploit the similarity in a 
sequence of numbers to reduce the number of data bits 
needed for their representation. Any re-arrangement 
that allows to reversibly place similar numbers next to 
each other will therefore improve the compressibility 
of the data series. One example is a series of 16-bit 
numbers where the sequence of MSB and LSB is 
different to the representation used by the compression 
algorithm. If MSB and LSB are swapped, compression 
will improve dramatically. Another example is data 
sampled in sequence from different channels of a 
measurement system. While the data from different 
channels can be expected to exhibit significant 
differences, the data from one channel often consists of 
data elements that show much less deviation. A re-
arrangement that groups data elements from individual 
channels will therefore improve data compressibility. 
For data sets that consist of an integer number of 
constant size records this can be done by applying a 
Transposition, a re-arrangement operation which is 
equivalent to the well-known matrix operation. 

7.2 Transposition of fixed-size / fixed-structure data 
packages 

A Transposition can be applied to a set of data 
consisting of N records of size M: 

for i=1:N 

    for k=1:M 

        output((k-1)*N+i)=data((i-1)*M+k); 

    end 

end 

It creates a new set of output data that consists of a 
sequence of all first elements of all original records, 
then all second elements of the original records etc. A 



transposition can be applied on various levels. Typical 
possibilities include bit-level, byte-level, and 16- or 32 
bit word level; in most cases choosing a level that 
corresponds to the input data representation gives the 
best results for the subsequent compression step. In this 
work we have restricted ourselves to transposition on 
byte and word level which is adequate for subsequent 
CCSDS RICE compression. A wider range of 
combinations of transposition type and compression 
algorithm has been evaluated in [5]. 

If the data records consist of inhomogeneous data 
elements (such as a 7-byte header followed by a 
sequence of 32 bit numbers) padding can help to 
improve data compression performance. In the 
example, adding 1 padding byte to the header will 
allow selecting a transposition on byte level, 16-bit or 
32-bit word level, instead of byte level only for the 
unpadded data records, and open up more possibilities 
for optimizing compression performance.    

7.3 Compression Test Results 

Data compression tests have been performed on files 
consisting of fixed size and fixed structure data packets. 
The chosen compression method was the lossless RICE 
compression algorithm. 

UVenus Express (VEX) Orbiter Magnetometer HK data 

This instrument generates HK data packets with a size 
of 98 bytes. Most data elements in the packets are 16bit 
integer numbers. Compression performance on the 
unprocessed data was poor (~ factor 1.2) due to the 
packet content which consists of HK parameters from 
uncorrelated sources.  

0

2

4

6

8

10

12

14

16

5 10 50 100 500 1000 5000
# Packets

C
o

m
p

re
s

s
io

n
 r

a
ti

o
 (

R
IC

E
 1

6
-6

4
)

Original Data File Transposed Data File (16-bit)

 

 

A transposition on 16-bit word level was performed 
before compressing the resulting dataset. In order to 
assess the impact of file size on the achievable 
compression performance, a number of files were 
generated with different numbers of packets. The 
compression ratio after transposition improved to a 
factor of 2 (for a file containing 5 packets) to ~13.9 for 

a file consisting of 5000 packets. The results are 
illustrated in Figure 2. 

UExoMars WISDOM data 

A second set of instrument data used for tests was 
science and housekeeping data for the ExoMars 
WISDOM Ground Penetrating Radar [18]. This 
instrument produces packets of 5151 bytes consisting 
of 143 bytes of header and housekeeping data plus 
1001 32-bit words of science data. Compressibility was 
evaluated on packet level. The 32-bit parameters 
represent IEEE-754 floating point numbers containing 
1 sign bit, 8 exponent bits, and 23 fraction bits. RICE 
compression of the original packets leads to a poor 
compression ratio of only 1.04. 

The word size dominating most of the packet structure 
suggests to apply a transposition on 32-bit word, 16bit 
word or byte level before applying the RICE 
compression. Compression tests for all transposition 
levels show that transposition on byte level is best 
suited to exploit the redundancy contained in 
subsequent parameters, and a compression ratio of 
~2.78 is achieved on average for a test data set of 18 
packets. This result is on the same level with the 
universal, but much more complex, compression 
algorithms implemented in the popular ZIP / WinZIP 
software. 

These results show that lossless CCSDS compatible 
compression can, in combination with simple pre-
processing steps such as padding and transposition, 
significantly improve the compression results 
achievable for fixed size & fixed structure telemetry 
data files such as typical spacecraft HK data. 

8. THE WHITEDWARF DATA COMPRESSION 
EVALUATION TOOL 

WhiteDwarf is an application that supports the 
evaluation of compression algorithms by the 
prospective users of those algorithms. It allows users to 
compress and decompress their own data files, and 
optimize algorithm choice and compression parameters 
by testing with representative user-selected datasets. It 
also allows users to perform pre-processing functions 
on their files. 

Using this tool, users can test how different 
combinations of algorithm and compression parameter 
perform when compressing samples of their own data. 
These combinations may be stored, exported and 
imported. The generation of test reports is also 
supported. 

Fig. 2. VEX magnetometer HK data compression ratio 



 

 

WhiteDwarf currently supports the CCSDS 121.0, 
CCSDS 122.0 and DEFLATE algorithms. Additional 
compression algorithms will be added in the future 
once the related standardization processes are 
completed. 

9. CONCLUSIONS 

Data compression is an important technology with 
many applications in space projects. ESA is, in 
cooperation with partner agencies, actively supporting 
the development and standardization of selected 
algorithms that are particularly suitable for space 
applications due to high performance and low resource 
requirements. Algorithms for lossless generic data 
compression, lossy and lossless image data 
compression, and for multispectral data compression 
are available or under standardization.  

Performance tests on selected CCSDS test data have 
been performed using a typical space qualified 50 MHz 
LEON2 based processor.  

For generic lossless CCSDS 121.0 data compression 
typical performances of ~6.5 to 10.9 sec/Msample and 
compression ratios of ~1.5 to 2.2 have been observed.  

A new ESA implementation of the CCSDS 122.0 
image compression algorithm with significantly 
reduced resource requirements has been implemented. 
Typical performances for lossless IDC are ratios of 
~1.7 to 2.4 and execution times of ~37.7 to 51.8 
sec/Msample. Compression times for lossy IDC (at 0.8 
bits per pixel, corresponding to a compression ratio of 
10 or 15 for the selected images) ranged from ~27.3 to 
30 sec/Msample.  

For multispectral image compression, standardization 
of algorithms is underway, and one of the foreseen 
algorithms has been presented. High compression 
performance and low complexity / implementation 

requirements in both software and hardware are 
important characteristics of the proposed algorithm.  

For the compression of packetized data, in particular 
for fixed size / fixed format housekeeping data, we 
have shown that the combination of simple pre-
processing steps and lossless CCSDS 121.0 data 
compression allows a significant reduction of the data 
volume. Lossless compression factors of ~2 up to ~14 
were achieved depending on the data structure and the 
number of packets in a data file. It is recommended to 
use similar techniques for platform and instrument HK 
data compression on missions where limited bandwidth 
is available.  

Finally, ESA has developed a new application software, 
WhiteDwarf, which allows the independent evaluation 
of ESA-supported data compression algorithms by 
prospective users. It provides implementations of 
several algorithms, as well as options and tools for data 
preprocessing, data manipulation, and reporting. The 
application is available to users via the On-board 
Payload Data Processing section (TEC-EDP) at 
ESA/ESTEC 

Fig. 2. The WhiteDwarf application's graphical user 
interface 
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