
ENHANCED DYNAMIC RECONFIGURABLE PROCESSING MODULE FOR

FUTURE SPACE APPLICATIONS

Session: Missions and Applications

Long Paper

Frank Bubenhagen, Björn Fiethe, Harald Michalik, Björn Osterloh

IDA TU Braunschweig, Hans-Sommer-Str.66, D-38106 Braunschweig, Germany

Paul Norridge, Wayne Sullivan, Chris Topping

Astrium Ltd, Gunnels Wood Road, Stevenage, Herts, UK SG1 2AS3

Jørgen Ilstad

European Space Agency, ESTEC, Keplerlaan 1, Noordwijk ZH, Netherlands

E-mail: bubenhagen@ida.ing.tu-bs.de, fiethe@ida.ing.tu-bs.de,
michalik@ida.ing.tu-bs.de, b.osterloh@tu-bs.de, paul.norridge@astrium.eads.net,

wayne.sullivan@astrium.eads.net, christopher.topping@astrium.eads.net,
jorgen.ilstad@esa.int

ABSTRACT

Future space missions require high-performance on-board processing capabilities and
a high degree of flexibility. State of the art radiation tolerant SRAM-based FPGAs
with large gate count provide an attractive solution for in-flight dynamic
reconfigurability. With these devices an advanced System-on-Chip (SoC) can be
implemented, but also the system reliability and qualification has to be guaranteed for
the harsh space environment. Therefore single modules have to be isolated from the
system physically and logically by qualified communication architecture, presented in
this paper: The SpaceWire based System-on-Chip Wire (SoCWire) communication
network. SoCWire provides a safe way to dynamically reconfigure parts of the FPGA
during flight. First verification results of a dynamic reconfigurable SoC based on
SoCWire are presented. Developed around SoCWire, the basic architecture for an
advanced Dynamic Reconfigurable Processing Module (DRPM) is proposed.

1 INTRODUCTION

For data processing of payload instruments on scientific spacecrafts specific
processing modules are commonly used. With increased data rates and the
requirement to control multiple sensors, the need for increased on-board processing
capabilities and a higher degree of instrument autonomy grow. While there are higher
requirements for a data processing on the one hand, on the other hand some basic
conditions remain still the same, i.e. limited downlink capacity, limited resources of
power and mass. Also the need for shorter development times and the demand by
scientists to adapt the instrument to mission specific requirements, even after launch,
require an advanced architecture. This has to be adaptable in flight and has to
guarantee the once on-ground achieved qualification even after change of modules.

mailto:bubenhagen@ida.ing.tu-bs.de
mailto:fiethe@ida.ing.tu-bs.de
mailto:michalik@ida.ing.tu-bs.de
mailto:paul.norridge@astrium.eads.net
mailto:christopher.topping@astrium.eads.net

Today the SRAM-based Virtex FPGAs from Xilinx provides high logic capacity and
thus offer a highly flexible platform to implement a reconfigurable System-on-Chip
(SoC) in a single device. These devices are available in radiation tolerant versions and
already have proven reliable flight heritage in many space missions, e.g. ESA Venus
Express (VEX) or NASA Dawn. However, the full flexibility of these devices to
perform complete or partial reconfiguration even during operation was only used
throughout the development phase on ground so far.

For an enhanced reconfigurable system the system qualification has to be guaranteed.
Effects during the reconfiguration process, space radiation induced errors and
interference of updated modules on the system have to be prevented. Therefore
updated modules have to be isolated physically and logically by qualified
communication architecture from the system.

This paper presents the key element for such an enhanced architecture, the SpaceWire
based System-on-Chip Wire (SoCWire) communication network. SoCWire provides a
safe way to dynamically reconfigure parts of the FPGA during flight. First verification
results of a dynamic reconfigurable SoC based on SoCWire are presented. At last the
basic architecture for an advanced processing module is proposed.

2 EFFECTS WITHIN A RECONFIGURABLE FPGA

The use of Xilinx SRAM-based FPGAs for a dynamic reconfigurable system requires
considering of two effects: (i) glitch effects, which occur during the dynamic partial
reconfiguration process while the FPGA is in operation and (ii) SEUs (Single-Event-
Upsets) within the space environment.

Partial reconfiguration denotes the modification of a limited, predefined portion of a
FPGA. A minimal reconfigurable system consists of a static area, which remains
unchanged and a Partial Reconfigurable Area (PRA), which is shared by at least two
Partial Reconfigurable Modules (PRMs) with different functionality. Xilinx FPGAs
have no explicit activation technique for a PRA. Therefore the configuration frames
become active as they were written. Configuration bits remaining unchanged will not
glitch during reconfiguration, but bits with a change of its logical state could
momentarily glitch when the frame write is processed. Experiments with
reconfiguration of a PRA from PRM1 to PRM2 and vice versa have shown
unpredictable behaviour for both, the duration of glitches and their influence on the
interface between the PRM and the static area.

A SEU is caused by charged particles losing energy by ionizing the medium which
they pass and leaving behind electron-hole pairs. Within a memory cell or flip-flop
this can cause a change of state and consequently corrupt the stored data. The
configuration for the programmable elements and routing resources of a Xilinx FPGA
is stored within static memory cells. With scrubbing falsified memory cells can be
corrected by reloading of configuration memory with the initial design, but this does
not prevent a propagation of an error through the system. Techniques like Triple
Modular Redundancy (TMR) can mitigate error propagation. The drawbacks of TMR
are higher resource utilization, a decrease of speed due to longer paths and an increase
of current because of more logic. Typically processing units for scientific instruments
are not mission critical. As result a trade-off between limited resources and instrument

availability is partly applied TMR. Anyhow, a SEU in a non-TMR PRM interface
logic could block the communication architecture and stop the system.

With glitch effects and SEU induced errors during dynamic partial reconfiguration the
system qualification in a classical bus-based architecture within a FPGA cannot be
guaranteed. An enhanced architecture is required, which isolates PRMs from the TMR
protected host system to guarantee uninterruptable operation of the system.

3 SYSTEM-ON-CHIP WIRE (SOCWIRE)

SoCWire has been developed to provide a Network-on-Chip (NoC) architecture
which is able to connect several PRMs with a host system and concurrently isolate the
PRMs logically and physically. SEU induced error, glitch effects or an intended
replacement of a module does not affect the operation of the remaining system.

3.1 SOCWIRE BASICS

Available spacecraft communication standards, e.g. MIL-STD-1553B, CAN bus,
SpaceWire were analyzed and compared for their suitability for a NoC. The outcome
of this analysis was that SpaceWire as an asynchronous, point-to-point, bi-directional,
serial link interface with a credit-based flow control, error detection, hot-plug ability
and automatic reconnection after a link disconnection [1] is currently the only
available switch topology and most suitable for a fault-tolerant and robust NoC
approach. As mentioned before SpaceWire is an asynchronous interface and
performance depends on skew and jitter. Processing modules are implemented within
a complete on-chip environment (NoC approach). Therefore, the Spacewire interface
has been modified to a synchronous, 10bit parallel data interface (8bit data, control
flag, parity bit), which results in significantly higher data rates compared to the
SpaceWire standard, e.g. 800Mbit/s at clock frequency of 100MHz. Additionally, the
data word width is scalable from 8bit to 128bit, which further improves the
throughput. Furthermore, the advantageous and reliable features from this standard,
such as flow-control, error detection and automatic link recovery in case of an error,
were preserved. Since SoCWire operates in a complete synchronous environment, the
timeouts during initialization and detection and recovery after a link disconnection
could be significantly decreased.

3.2 SOCWIRE NETWORK

To build up a network, a switch and a packet oriented protocol is needed. A SoCWire
network as shown in Figure 1 comprises: SoCWire coder/decoder (CODEC) as
network interface and a SoCWire switch to route the data packets through the network
[2]. The SoCWire switch is again based on the SpaceWire standard. A SoCWire
CODEC connects a node or the host system typically via a SoCWire switch to a
SoCWire network. The nodes are similar to SpaceWire nodes source and destination
of a link. The SoCWire switch is scalable from 8bit to 128bit data word width and
provides a configurable number of up to 32 ports. In contrast to a SpaceWire router
the configuration port was discarded and logical addressing is not supported to safe
resources. A simple path addressing scheme is implemented instead, which is suitable
for small on-chip networks. The SoCWire switch comprises wormhole routing and the
simple time slot based round robin scheduling algorithm.

Figure 1 SoCWire architecture network example

4 SOCWIRE: ARCHITECTURE VERIFICATION

The objective of SoCWire is to provide a robust communication architecture for
dynamic partial reconfiguration systems. Since the major requirement for SoCWire is
the isolation of a PRM, this feature has to be validated in an architecture verification.

4.1 FUNCTIONAL VERIFICATION

SoCWire has to be validated on the advantageous features of SpaceWire with link
initialization, error detection/recovery and unidirectional and bidirectional data rates.
The main difference between SpaceWire and SoCWire is that SoCWire provides a
parallel data interface and operates in a completely synchronous environment. The
advantage of this point is that SoCWire is more deterministic, because any change of
state is related to clock cycles. SoCWire is a fully pipelined implementation and two
clock cycles are required to perform an action. One advantage of the synchronous
environment is the much faster initialization of a link in comparison to SpaceWire. A
disconnection is detected after three clock cycles, the exchange of silence lasts six
clock cycles and the timeout twelve clock cycles. Overall, 26 clock cycles minimum
are necessary for building up a link on the condition that both SoCWire CODECs
receive the reset at the same time. Tests with adding delays of different length to one
of these reset signals always resulted in a proper initialization of the link. Both the
unidirectional and the bidirectional data transfer have been tested with a Pseudo
Random Bit Sequence (PRBS) generator stimulus to validate data integrity.
Furthermore, data packets of different length (1 to 1048576 bytes) have been tested.
In all performed tests no transmission errors have been detected and the data rates
from the simulations could be verified. Furthermore, SoCWire has been tested and
validated on the error detection/recovery features of the SpaceWire standard, e.g.
parity errors, escape errors, character sequence errors, credit errors and disconnect
errors. Figure 2 depicts the fault injection mechanism for this verification. All errors
have been successfully injected and error detection and recovery could be validated to
be SpaceWire conform. The error recovery time of SoCWire is at minimum the
initialization time for a link plus synchronization overhead.

Figure 2 SoCWire verification architecture

4.2 FAULT TOLERANCE

One mandatory requirement in a space environment is fault tolerance. Single-Event-
Upsets on a SoCWire node within the FPGA can be modelled as stuck bit either at
logical ‘0’ or ’1’. This error can occur during a link initialization or during run-time.
With the programmable fault injection mechanism a certain bit in the link has been
fixed to one of the logical states. In all performed test a stuck bit either in the link
initialization phase or during run-time does not affect the functionality of the host
system and an error is reported. Appropriate error recovery schemes can be applied by
the user, e.g. scrubbing.

During the reconfiguration process of a PRM glitch effects occur and affect nearly
every part of the interface logic for a given time in the range of microseconds. These
effects impact the link initialization phase when an empty PRA is configured for the
first time or during an established link connection when a PRM is replaced by another
one. To verify the impact of glitch effects on a SoCWire CODEC interface, a random
pattern generator with random delay in the range of nanoseconds to several
microseconds was implemented in hardware. This generator emulates the behaviour
on the interface signals which could occur with different PRM configuration patterns.
Even though this generator does not simulate the real FPGA technology and effects
during dynamic partial reconfiguration, during the test the SoCWire host system was
not disturbed in its operation.

4.3 PARTIAL DYNAMIC RECONFIGURATION

A dynamic partial reconfigurable SoCWire architecture with host system including
SoCWire CODEC and a PRM with SoCWire CODEC as well as an additional module
for control and data generation e.g. PRBS has been implemented. Moreover, a static
PRM with all outputs ones and a PRM with pure counter functionality have been
created. The following tests have been performed with the JTAG interface to
reconfigure the system dynamically: (i) SoCWire counter module to SoCWire PRBS
module, and (ii) Static module to SoCWire PRBS module. Since dynamic partial
reconfiguration has the same behaviour as scrubbing on all elements within a module
which does not change, test (i) was performed to prevent the SoCWire CODEC from
not being affected by the dynamic reconfiguration process.

Two behaviours have been observed during the tests, which are shown in Figure 3.
The figure represents the “active signals” or link connected from the SoCWire
CODEC core on host system side and on PRM side. (I) shows a smooth dynamic
reconfiguration of the PRM. Glitches occurred on all PRM outputs during the
reconfiguration process. (II) shows the glitch effects as well as a repeatedly
establishing link connection stabilising at the end. There is not much known about the

dynamic partial reconfiguration process in Xilinx FPGAs to explain this effect.
Configuration frames become active when they are written; it is most likely that parts
of the design operate before the reconfiguration process is finished.

Figure 3 SoCWire "active signals" during dynamic partial reconfiguration

Since the configuration memory within a Xilinx FPGA is written from the left to right
side [3], also the influence of bus macro placement, which establishes communication
between static area and PRAs, has been analysed. During the initial tests the bus
macros were placed on right side of the PRM as depicted in Figure 4 on the left hand
side. Tests with placement of the bus macros on the right hand side of the PRM
showed a smooth stable link connection avoiding the oscillation effect. Even with
oscillating behaviour during the dynamic partial reconfiguration process, the PRMs
were isolated from the host system and do not have any effect on its operation.

Figure 4 PRM bus macro placement

5 DRPM ARCHITECTURE

Around the SoCWire communication architecture we are currently developing under
ESA contract a flexible processing system with full support for in-flight dynamic
partial reconfiguration of application firmware, the Dynamic Reconfigurable
Processing Module (DRPM). The basic DRPM architecture is shown in Figure 5 [4].
The major subunits are (i) dynamically reconfigurable FPGAs (within each DFPGA),
(ii) SpaceWire router for hosting and managing the networking between various
subunits, (iii) system controller for overall configuration control of the module and
execution of application software, (iv) interfaces to spacecraft using standards like
SpaceWire, MIL-1553B and CAN bus, and finally (v) interfaces to the instrument
electronics, e.g. sensors or cameras.

The DRPM comprise a highly modular architecture. Consequently, the SpaceWire
router can provide expandability not only to additional DFPGAs, but also to

additional DRPMs. With this concept it is possible to simply extend the processing
capacity by attaching additional modules or adding modules for hardware redundancy.
Then one system controller would be the master and the other ones slaves.

Figure 5 DRPM architecture

Since the system controllers’ main task is controlling and supervising the overall
DRPM, a fault-tolerant processor implementation should be used for this subunit. For
instance, the LEON-based SpaceWire RTC ASIC (AT7913E) already incorporates the
required interfaces like RMAP compatible SpaceWire and CAN bus controller. Of
major importance is a safe and flexible implementation of the high capacity non-
volatile memory for secure storage of all partial configuration bit files needed for the
DFPGAs. Each reconfigurable DFPGA consists of configuration controller containing
the static area with common interfaces and one or several reconfigurable FPGA(s),
mainly comprising the dynamic area. This basic architecture is depicted in Figure 6.

Figure 6 DFPGA architecture

The configuration controller is responsible for configuration, verification and
supervision of PRMs within the dynamic area. It is implemented within a TMR by
design one-time programmable RTAX FPGA. Two independent SoCWire
communication networks form the backbone for controller functionality. One network
is responsible for secure dynamic configuration and scrubbing of reconfigurable
FPGA(s). The other one connects the dynamic area with the processor of the
controller, instrument interfaces and a large local data memory. To achieve high
reliability this memory is implemented in the static area with advanced symbol error
correction capabilities for secure temporal storage of local configuration files. The
independency of the two SoCWire networks provides increased reliability. The
processor is required to provide data-flow control functions for the allocation and
access of various interfaces to the commonly used data memory and configuration
management of the attached reconfigurable FPGA(s). The dynamic area is based on
Xilinx Virtex-4 FPGAs which are available on reliable packaging and certified for
radiation performance and reliability. The SoCWire switch within the small static area
of the reconfigurable FPGA(s) connects to the different PRMs and optionally directly
to external high-speed interfaces, e.g. Channel Link. To achieve a modular
architecture, the switch provides also direct data exchange between different
reconfigurable FPGAs or even DFPGA subunits.

6 CONCLUSION

The DRPM provides an architecture being suitable to satisfy the demand of future
space missions for high performance on-board processing with the requirement to
update processing modules in-flight. One issue within such an enhanced architecture
is the guarantee of system qualification, even after an update of a processing module.
SpaceWire is widely used as a proved reliable interface standard on-board spacecrafts.
Modifying this standard to the fault-tolerant, high-speed on-chip communication
architecture SoCWire for FPGAs offers the possibility to built-up systems where
processing modules can be exchanged without affecting the operation of the host
system. SoCWire is published as an open source project provided by IDA. Source
code, documentation and testbenches can be accessed at www.socwire.org.

7 REFERENCES

1. ESA ESTEC, “Space Engineering: SpaceWire-Links, nodes, routers, and
networks”, ECSS-E-50-12A, Noordwijk Netherlands, January 2003.

2. B. Osterloh, “SoCWire User Manual“, www.socwire.org, 2009

3. Xilinx Inc., “Virtex-4 FPGA Configuration User Guide. UG071(v1.11)”,
www.xilinx.com, USA, 2009.

4. ESA, “FPGA bases generic module and dynamic reconfigurator”, TEC-
EDP/2008.30/JI, Issue: 1 Rev.1, Noordwijk, Netherlands, 2008

http://www.socwire.org/

