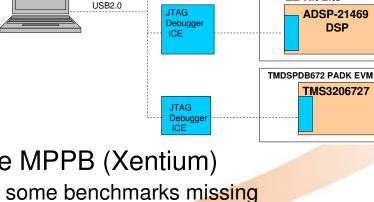
NGDSP Benchmarking & SDE Evaluation Final Report

European DSP Trade-off and Definition Study (ref. 22645/09/NL/LvH)

John Franklin

Evaluation of 4 DSPs


Benchmark support

Generate / Analyse

USB2.0 / Ethernet interface

CCSDS packet

- Benchmarking evaluation of initially 3 DSPs
 - Texas Instruments TMS320C6727
 - Analog Devices ADSP-21469
 - Atmel DIOPSIS 940
 - Common benchmarking structure
 - Used manufacturer libraries,
 - or same software on all
- COTS manufacturer evaluation boards
 - TI C6727 Lyrtech PADK EVM
 - ADSP-21469 EZ-Kit Lite
 - DIOPSIS AT572D940HF-EK board
- Partial software evaluation of Recore MPPB (Xentium)
 - Analysis of provided benchmarks only some benchmarks missing
 - Two Xentium cores, targeted migration to many-core NoC, performance figures presented as single-core. Fixed-point, not floating-point

Ethernet

AT572D940HF-EK Diopsis 940HF

Ether Ether MAC

> USB device

AHB

EZ-Kit Lite

mAaic

ARM9

DSP

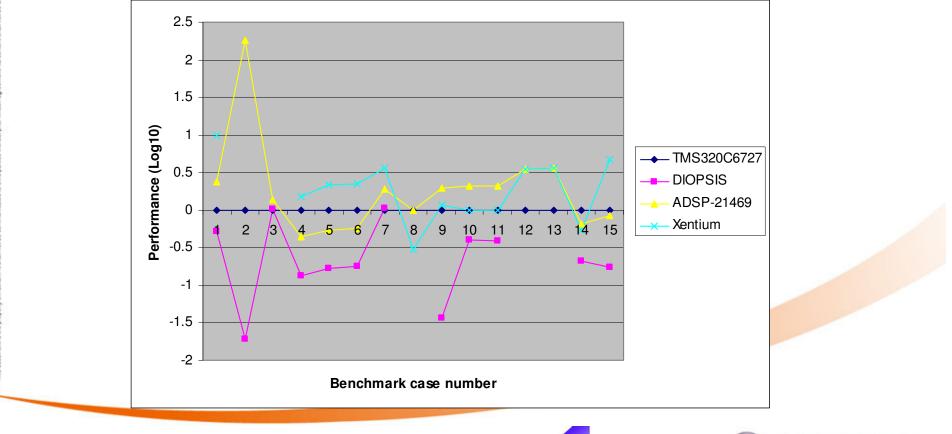
Comparison of DSP hardware features

	ADSP-21469	DIOPSIS	TI C6727
Clock Rate (MHz)	400	100	350
Performance	1.6 GFlops	1 GFLops	2.1 GFlops
Feature Size	65nm	130 nm	90 nm
Memory B/W	6.4 GB/s	2 GB/s	5.6 GB/s
Internal memory	,	Data 80 kB, Program 128 kB	32 kB L1P, 256 kB (P & D)
On-chip functions	FFT & FIR accel., timers, interrupts	Timers, interrupts	Timers, interrupts
	,	8 MB SDRAM SRAM, DMA only	128 MB SDRAM, SRAM, Flash
DMA	Stride, chain, ping- pong,scatter/gather		Stride, circular, 2D & 3D
	Address generation zero-overhead loop		Address generation zero-overhead loop

Xentium hardware features

	Xentium	
Clock Rate (MHz)	50 MHz (FPGA), 200? (STM 65nm)	
Performance	200 MMAC per core (Xilinx) x 2 cores	
Memory B/W	800 MB/s local, 200 MB/s memory-tile	
Internal memory	32 kB data, 8kB L1P cache per core + 256 kB memory-tile per N cores	
On-chip functions	Timers, interrupts, LEON2 controller	
External memory	2x DDR2 SDRAM, Flash	
DMA	Yes. No chain, stride or 2D	
Core features	VLIW, 10 units, packed 16-bit ops including MAC hardware loop, bit-swap for FFT, complex-multipl	

Benchmarks Performed


- Benchmarks "kernel" and "application"
 - Forward & Return I/O data-rate of CCSDS packetisation
 - FIR filter: 16,64,256 taps (1024 samples)
 - FFT: 1024, 1960, 4096 points
 - Lossless data compression (CCSDS 121.0-B-1)
 - Lossy image compression (CCSDS 122.0-B-1)
 - Onboard processing #1 filtering, decimation, compress
 - Onboard processing #2 demodulate, polyphase-decimate
- Measured on COTS evaluation boards
 - Scaled to 65 nm ASIC process
 - Process generation => 30% \uparrow F_{MAX} , 30% \downarrow Power
 - Except Xentium scaled to F_{MAX} = ADSP, from 50 MHz Xilinx
 - Excludes I/O. Includes "overheads" e.g. fixed-to-float, DMA, LEON / ARM co-processor interaction for DIOPSIS & Xentium

Benchmark Performance graph

- Performance re-based to TMS320C6727 nominal comparison
 - C6727@350 MHz,ADSP-24169 @307 MHz,DIOPSIS940 @130 MHz, Xentium single-core @307 MHz

Benchmark Performance comments

- I/O Benchmark (0.3 Mpacket/s)
 - DMA moves data from I/O to memory: packet header processing
 - DIOPSIS transfers ARM:DSP using buffer. Latency & payload data

FIR / FFT benchmarks (~10 MSPS 64-tap FIR, 4096-pt FFT)

- TI C6727: 1.9 (out of 2) MAC/cycle
- ADSP21469: SIMD 1.25 (out of 2) MAC/cycle. Optimal complex FFT
- Xentium: 16-bit int. MAC vs 32-bit float twice as many MACs per unit
 - FFT 1960-pt and FFT-4096 extrapolated not efficiently coded
- DIOPSIS: low clock-rate. Can't use effectively many instruction units
 - Small internal memory & no direct-read external RAM
- Lossless data compression (~1 MSPS)
 - Compiler mapping on complicated code: ADSP-21469 133 cycles per sample, DIOPSIS = 290, TI C6727 =104
 - DIOPSIS also has lower clock frequency

Benchmark Performance comments

- OBP cases #1 (~2 MSPS) and #2 (~7 MSPS)
 - Similar issues to FIR filters / data compression
 - ADSP-21469, TI C6727, Xentium approach their core efficiency
 - DIOPSIS cannot use most of its core units, and has low clock-rate
 - Also tests compiler efficiency for polyphase FIR filter coded in 'C'
 - Performance ~20% lower than assembly library-code
 - Except DIOPSIS which is 60-80% slower
- Image compression (0.06 Mpixel/s)
 - Legacy code: 1 Mpixel data does not fit in internal memory
 - COTS Performance determined by external RAM rather than core (ADSP-21469 has DDR2, TI 6727 has only SDR SDRAM)
 - DIOPSIS can't direct-read external RAM => full code re-write on legacy code to DMA random-access data-words individually
 - Xentium peak performance is estimated: benchmark S/W performs the bitencoding on the LEON (99% of the processing time)

Hardware Performance bottlenecks (1)

Analog Devices ADSP-21469

- FFT / FIR accelerators offload the core but are slower
 - For multi-functional code un-typical of space applications
 - Recommend not to port accelerators to space NGDSP
- Compiler can't SIMD vectorise most applications (half performance)
 - Improve compiler to identify SIMD opportunity
- Texas Instruments TMS320C6727
 - None seen

DIOPSIS Hardware bottlenecks

- Low clock-frequency (100 MHz)
 - 10 instruction units are rarely used / usable on applications. Target 300 MHz
- Low memory-bandwidth
 - More instruction units need more bandwidth / clock to feed them
- On-chip data RAM too small (80 kB data)
 - Forces applications to external memory. 256 kB is minimum
 - 80 kB data / 128 kB program hard-coded in ISA address-space
- Can't execute program or data from external memory
 - DMA only random-access requires complex code re-factoring
 - Data is not relocatable must be decided at SW architecture stage
 - Many applications impractical to implement
 - 40-bit float (only), 32-bit mem-access. Float inaccessible in external memory
- DMA with stride not supported
 - Or rather, only with non-blocking call, with no RTOS to schedule it
- Endian-ness of ARM and mAgic does not match
 - Inefficient data exchange especially as ARM / LEON mediates I/O

MPPB / Xentium Hardware bottlenecks

Xentium can be targeted for many-core NGDSP

- Scaleability is crucial Network-on-Chip architecture
- Number of cores for space NGDSP not assessed within Astrium analysis
- Performance figures include LEON, DMA, NoC
- Some scaling issues on MPPB configuration. If addressed, linear performance-scaling possible
- Xentium instruction cache-size
 - Xentium 8 kB I-cache should be enlarged to >16 kB (too small for 'C' code)
 - FIR kernels fit, 'C' tight loops do not (e.g. 1960-point FFT, lossless compression)
- LEON stall issues
 - MPPB LEON barely fast enough to trigger DMA to feed Xentium
 - LEON ISR stalls on I-cache miss. 25% single-core overhead, not scaleable
- DMA Stride capability
 Needs separate source & destination, for FFT & image-processing
- RAM cacheability
 - Data transfer to LEON in non-LEON cacheable RAM (coherence)
 - Very slow LEON data processing
 - Should be made cacheable LEON can flush the cache when necessary

Many-core Architecture Recommendations

- Implement one memory-tile per NoC row of Xentium cores
 - Data-flow is routed primarily horizontally
 - Prevent bottleneck on cores access to internal memory
- Implement one HSSL I/O per NoC row
 - Prevent I/O bottleneck to cores
- Implement at least 2 DMA channels per Xentium core
 - LEON is too slow to reconfigure DMA channels dynamically
 - MPPB has total 8 channels, would support up to 4 cores
 - Enlarge DMA controller to scale number of channels with cores

Power consumption

- COTS board => space process extrapolation
 - Very approximate
- Analog Devices ADSP-21469
 - 0.6-0.8 W measured
 - "Non-arithmetic" processing consumes most power
- Atmel DIOPSIS
 - 0.2 W measured, almost independent of application
 - Since the performance is low, not power-efficient
 - Clock-frequency scaled to same as ADSP-21469, more power
- Texas Instruments TMS320C6727
 - 1.2-1.6 W (power-spreadsheet => worst-case)
 - "Arithmetic" processing consumes most power

All the space you need 28 August 2012 - 13

SDE features and components

ADSP-21469 and Texas Instruments C6727

- Project editor, C/C++ compiler, assembler, linker, script engine, simulator
- RTOS (VDK or DSP/BIOS respectively) threads, priority
- Graphical trace (event-timing)

MPPB

- Xentium: Compiler, assembler, simulator (single-core), I/O lib
- Xentium compiler based on gcc. Stable and functionally correct
- Eclipse-compliant tool-chain, IDE project-editor available

Atmel DIOPSIS

- ARM tool-chain in Windows, mAgic DSP tool-chain in Linux
- mAgic Command-line compiler, linker, simulator (no project-editor)
- Separate for ARM and mAgic core (no co-simulation)
- RTOS is Linux for ARM, DBIOS for mAgic (interrupts, mutexes, no threading)

All the space you need 28 August 2012 - 14

SDE Libraries

ADSP-21469

- I/O (including printf), time, board support, basic maths
- Complex arithmetic, FFT (arbitrary size)
- FIR & IIR filters, matrix operations
- Auto- and cross-correlation, histograms, inverse sqr-root

Atmel DIOPSIS

- ARM has Linux, I/O (including printf), time, board support
- Limited signal-processing functions:
- Selected FFT sizes up to 1024, FIR filtering
- Matrix multiplication & inversion, inverse sqr-root

Texas Instruments C6727

- I/O (including printf), board support, basic maths
- FIR & IIR filters, arbitrary FFT, auto- and cross-correlation (single & double precision)
- Vector and matrix operations, inverse sqr-root
- MPPB / Xentium
 - Drivers / API for I/O, timers, interrupt / mailbox, DMA engine
 - As delivered: specific-length FIR filters, generic FFT (un-optimised for memory)
 - Plans for digital radio e.g. Viterbi, modems, filters

Debugging capabilities

- Both ADSP-21469 and Texas Instruments C6727
 - Not Eclipse-compliant editors, but good GUI project environment hyperlinking, bracematching, source-code auto-complete / errors
 - On-target debug over JTAG debugger
 - Breakpoints (conditional), single-stepping
 - Memory / variable visibility & setting, simulation & target
 - ADSP21469 has Background Telemetry Channel (BTC)
 - TI C6727 has stack overflow monitoring
- Atmel DIOPSIS
 - ARM gcc, Eclipse-compliant; mAgic no editor development support
 - No breakpoint or single-step
 - No co-simulation between ARM and mAgic
 - No memory / variable setting or visibility on target
 - Debug process: Printf (unstable), or use ARM to handshake and report mAgic data

Xentium

- Eclipse: good project editor (function hyperlinking, source error highlight, etc)
- Single-core (only) simulator of Xentium with I/O lib
- No on-target Xentium breakpoint, single-step or visibility
- No real-time LEON co-simulation (NoC, DMA not included)

Code optimisation support

Both ADSP-21469 and TI C6727

- Compiler provides cycle-counts & hint comments
- Pragma's for compiler vectorisation hints
- Statistical profiler to identify code bottlenecks
- TI C6727 additionally provides "Compiler Consultant"
 - Statistical analysis tool to trade-off speed vs code-size

Atmel DIOPSIS

- Compiler cycle-count information (buried), but no hints
- No statistical profiling
- Xentium
 - No compiler loop cycle-counts or profiler
 - Trace, but excludes memory & bus overheads

SDE issues seen

ADSP-21469

- SIMD unused by compiler on most code not fully used even on library code for single-channel FIR filter. Action to improve compiler recommended
- Optimisation keyword for data location reduces code portability (non ANSI)
 - Preferably handled by linker or #pragma
- BTC interface to Visual Basic script not fully supported at time of testing
- TI C6727 (No issues seen)
 - User-friendly development & debug environment

DIOPSIS SDE issues

Critical

- Compiler is very unstable crashes most of the time even on known good code. Very slow (half hour for a few hundred LOC). Requires frequent #pragma code-modification to allow it to compile functions >100 lines
- Major
 - Compiler output uninformative and lengthy Information & Error messages
 - Non-integrated SDE for mAgic and ARM (even different OS)
 - Debug very difficult
 – no co-simulation, breakpoint or single-step
 - Poor code development environment (no IDE)
 - Poor library performance: simple FIR filter uses less than half the processor

Acceptable

- Compiler-specific behaviour between ARM & mAgic does not match
- Passing data between ARM and mAgic requires the developer to "link by hand" – header-define the address of each variable. No mailbox available

Xentium / MPPB SDE issues

- Strong need for tool for graphical trace
 - To debug timing & event synchronisation on multicore, DMA, NoC
 - Simulation of Xentium does not include NoC, memory, cache
- Compiler performance should be improved
 - Performance penalty ~2-3x on complicated code
- Need for Xentium on-target breakpoint debug
 - Plus single-step / visibility of variables & memory
- Signal processing libraries not mature
 - Scope and Performance of currently provided routines well below achievable hardware performance. Needs development effort

Performance Conclusions

Comparison: ADSP-21469 and Atmel DIOPSIS 940

- ADSP-21469 higher performance by factor ~3x-5x
- Some applications much slower on DIOPSIS (~50x) or not executable, due to architecture limitations

Comparison: C6727 and ADSP-21469

- Benchmark-dependent (~2x factor either way)
- NGDSP memory interface migration
 - SDRAM bandwidth may be critical to overall performance (DDR2 / DDR3) particularly for highest performance processors

Performance conclusions (2)

Comparison: Xentium vs. ADSP-21469

- Xentium achieves near ADSP-21469 on most applications, better on some
- Many instruction units used per clock, wide register & memory bandwidth
- Xentium doubles performance from use of packed 16-bit integer arithmetic, achieving better than ADSP-21469 on those cases

Xentium system performance

- To meet the system-level performance on space applications, the design configuration should be upgraded in some simple but key aspects:
- Xentium I-cache size. LEON I-cache stalling. DMA stride feature. RAM cacheability
- Network on chip approach is a significant advantage
 - Scaleable performance, if the above points are met
 - Predict linear performance with number of cores, up to I/O capability
 - Number of cores feasible on STMicro 65 nm not assessed (inc. memory)

All the space you need 28 August 2012 - 22

Conclusions (SDE Quality)

User-friendliness

- TI C6727 & ADSP-21469 have user-friendly development & debug environment
- Both have good signal-processing libraries supporting space industry needs

Atmel DIOPSIS

- Too unstable & slow to use.
- Very user-unfriendly development & debug environment
- Poor performance of library benchmarks

ADSP-21469

- Hand-optimisation of code needed to use SIMD otherwise performance is halved from peak on arithmetic applications
- Non-ANSI Program/Data memory linker

Xentium

- Good single-core development environment.
- Recommend to improve development and debug tools for many-core. On-target breakpoint debug and event timing / synchronisation trace tool.
- Compiler performance adequate, but should be improved to match H/W performance
- Xentium signal-processing libraries should be developed

