

- MPPB platform hardware
- MPPB / Xentium[®] software development
- MPPB validation & benchmarking
- MPPB FDIR
- ASIC migration & radiation hardening
- MPPB lessons learned / future directions
- MPPB demonstration
- Q&A

37

- All Validation tests passed
- Endurance tests run with IO interfaces (>72 hours)

Floating-point calculations on Xentium DSP Programmers' view

XentiumTools

- Floating Point (FP) software emulation
- FP support completely integrated in XentiumTools (by default)
- ANSI C (C99) standard programming language
 - Native floating point types and operations
 - Standard C math libraries (eg. libm)
- IEEE-754 compatibility
 - One rounding mode: round to nearest, ties to even
 - Denormalized numbers handled
 - Simplified exception handling
 - No interrupts and no status flag

Floating-point calculations on Xentium DSP Software emulation implementation

- Xentium compiler translates C programs using floating-point into programs using only integers
 - Compiler replaces FP operations and conversions by calls to FP emulation functions using only integers
- FP emulation functions
 - based on C library from the LLVM Compiler Infrastructure Project
- Standard C-libraries
- Performance depends on efficient compiler and libraries
 - Cycle count and code size

I/O performance

- ADC-NoC 40 MS/s Limited by ADC performance
- DAC-NoC 40 MS/s Limited by DAC performance
- SpW-NoC 70 Mbit/s SpW runs at 100Mbps (gross)
- SpW-RMAP 70 Mbit/s
- Gigabit I/F
- SpW runs at 100Mbps (gross)
- 1.1 Gbit/s Requirement; V-5 supports 6.5 Gbit/s
- Running I/O concurrently at <u>maximum</u> speed can be achieved by using different memory resources:
 - Xentium data memories / SRAM memory tile connected to NoC
 - SDRAM external memory connected to NoC / AHB

MPPB Benchmarking

Analogue Data Acquisition Processing and Output

DAQ processing	Max Data rate	FIR exec time (1024 samples)	FFT exec time	
Case 1: unprocessed	40 MS/s	2*10 ⁻⁵ s	NA	
Case 2: FIR LP 16	6 MS/s	1.7*10 ⁻⁴ s	NA	
Case 3: FIR LP 64	2.5 MS/s	4.1*10 ⁻⁴ s	NA	
Case 4: FIR LP 256	730 kS/s	1.3*10 ⁻³ s	NA	
Case 5: FFT1024	6.46 MS/s	NA	9.4*10 ⁻⁵ s	
Case 6: FFT1960	4.73 kS/s	NA	0.2 s	
Case 7: FFT4096	865 kS/s	NA	0.005 s	

Parallelism

- Single Xentium used in the benchmark
- code fairly mature, except for 1960 and 4096 FFT mapping

Analogue Data Acquisition Processing and Output

MPPB Benchmarking

- Image Data Compression
 - 2D DWT
 - Encoder
- Control code of DWT on Xentium developed in C
- DWT kernels on Xentium implemented in assembly
- Benchmark concerns are
 - large amount of bit operations and speed difference
 - Code only functional, not optimal, transform is fairly mature
 - Large speed gain could be made in the encoder ~4x

MPPB Benchmarking

Image Data Compression

© 2012 Recore Systems BV

Given a constant M, any symbol S can be represented as a quotient (Q) and remainder (R), where:

 $S = Q \times M + R.$

If S is small (relative to M) then Q will also be small

Rice encoding represents Q as a unary value and R as a binary value.

A value N may be represented by N 1s followed by a 0. Example: 3 = 1110 and 5 = 111110.

Given a bit length, K. Compute the modulus, M using by the equation $M = 2^{K}$. Then do following for each symbol (S):

Write out S & (M - 1) in binary. Write out S >> K in unary.

Encode the 8-bit value 18 (0 <i>b</i> 00010010) when $K = 4 (M = 16)$	Bit Plane Encoder: 0b0001	
S & (M - 1) = 18 & (16 - 1) = 00010010 & 1111 = 0010 S >> K	0b1000 0b1010 0b1110	
18 >> 4 = 0b00010010 >> 4 = 0b0001 (10 in unary)		

MPPB Benchmarking

- Onboard processing Case 1
 - 128 Complex-FIR 80% DDC (10M samples)
 - Compressor
 (Rice Encoder)
- Benchmark concerns are
 - Speed difference, using more Xentiums makes no sense
 - Encoder is purely functional

MPPB Benchmarking

- Onboard processing Case 2
 - Demodulation and 80% Digital Down Conversion

MPPB Benchmarking

MPPB Benchmark software

- Leon proves to be a bottleneck in the design (interrupts, DMA and compression)
 - Should be dealt with by Xentium itself
- MPPB system itself offers a lot of options
 - e.g. distributed heterogeneous memories, different synchronization mechanisms
- Debug capabilities are essential, e.g. in-system or GDB hook
- No PhD required for software development but experience with VLIW / Embedded systems / Distributed memory systems is highly preferred

- Open for interpretation in some cases
- Would benefit greatly from having reference code, and reference input and output (CCSDS standards not that clear for the average reader)
- Lack of parallelism in benchmark might not show the best of any multi-core (MPPB) system
- Some statistics are a bit peculiar (compression ratio)

- MPPB platform hardware
- MPPB / Xentium[®] software development
- MPPB validation & benchmarking
- MPPB FDIR
- ASIC migration & radiation hardening
- MPPB lessons learned / future directions
- MPPB demonstration
- Q&A

- MPPB has many redundant on-chip resources
 - Xentiums
 - Memories DDR, Memory Tile, Tightly Coupled Memories
 - Digital interfaces 3 SPW and 1 Gbit interface
 - Debugging SPW-RMAP and UART-DCOM
- Xentium task migration Benchmark B2
 - from ADC \rightarrow Xentium 0 \rightarrow DAC
 - to $ADC \rightarrow Xentium 1 \rightarrow DAC$

MPPB FDIR Capabilities Reconfiguration

- Proposed Xentium task migration
 - All components are memory mapped
 - Redirection of ADC/DAC input/output
 - Update of Xentium address
 - NoC routes automatically modified

- Seamless task migration
 - No data loss or corruption
 - Useful for run-time dependability checks
- Demonstration to be implemented Benchmark B2
 - Control performed by the LEON
 - Prepare X1 to run the same code as X0
 - Update ADC/DAC transfers
 - At the end of a block, start X1 instead of X0

- MPPB platform hardware
- MPPB / Xentium[®] software development
- MPPB validation & benchmarking
- MPPB FDIR
- ASIC migration & radiation hardening
- MPPB lessons learned / future directions
- MPPB demonstration
- Q&A

- All MPPB IPs are susceptible to radiation effects
 - SEU, SET, SEFI, SEL, TID, ...
- Selection of components to be assessed
 - Xentium
 - Xentium Network Interface
 - Memory Tile (Slave Network Interface + SRAM)
 - NoC routers
 - ADC/DAC interface
 - SPW interface
- Investigation
 - Effects of SEEs on the system for each component

- Three techniques used
 - Process \rightarrow DARE 180 (Enclosed Layout Transistor) or rad.-hard STM65
 - SRAMs \rightarrow EDAC
 - System → Watchdog

Mitigation Tashniguas	Radiation Effects						
Mitigation Techniques	TID	SEL	SEU	MBU	SET	SEFI	
Hardening by design	Х	Х	Х		Х		
EDAC			Х	Х			
Watchdog						Х	

MPPB Radiation Hardening Hardening impact

- Expected impact of hardening
 - DARE 180nm
 - Area: 2x-4x increase
 - Power consumption: 2x increase
 - STM 65nm (rad.-hard)
 - Library not available
 - EDAC
 - 30-60% increase of SRAM size (SRAM bits + code logic)
 - Timing penalty on SRAM accesses
 - Watchdog
 - Negligible impact

ASIC migration rad.-hard 65nm <u>estimations</u>

- Xentium VLIW DSP core in rad.-hard 65nm CMOS
 - Clock: 300 MHz
 - Performance: 1.2 GMACs/s
 - NoC per link: 9.6 Gbit/s
 - Area: 1.1 mm²
 - 75% gates utilization
 - Including NoC interface
- Many-core SoC example
 - 48 Xentium processing tiles
 - 16 memory tiles
 - 60 NoC routers
 - 8×8 mesh

→60 Giga MAC operations/s →60 mm² (75% gates utilization)

61

- MPPB platform hardware
- MPPB / Xentium[®] software development
- MPPB validation & benchmarking
- MPPB FDIR
- ASIC migration & radiation hardening
- MPPB lessons learned / future directions
- MPPB demonstration
- Q&A

MPPB architecture

RECORE

- For scalability; distribute data flow control in NoC
- NoC provides high bandwidth
 - No I/O and memory bottlenecks
- For scalability; avoid central interrupt handling
- MPPB programming aspects
 - Distributed data flow fits nicely with streaming applications
 - For progammability; debugging/tracing capabilities on NoC essential
 - For scalability; multi-core programming SDE essential
- Radiation hardening
 - Technology independent design; design blocks can be mapped on standard process

- ESA TRP activities
 - NGDSP CCN (Astrium)
 - Evaluation study of MPPB system for space applications
 - DARE+ (Imec, Recore Systems)
 - Rad.-hard prototyping of MPPB elements in DARE180 (Jul '11 – Jun '13)
- ESA NPI activity
 - Development of methodologies and tools for predictable, real-time LEON/DSP-based embedded systems (2011 – 2013)
 - Performed by Politecnico di Milano (Polimi)
 - Supported by Recore Systems / MPPB

Rad.-hard DSP and NoC prototyping in DARE180

- DARE+
 - Rad.-hard prototyping of MPPB elements in DARE180
 - ESA TRP activity, 2011 2013
- ASIC Prototype
 - DARE180 CMOS technology
 - Available area: 5x10 mm²
 - Architecture
 - 1 Xentium core @ ~100MHz
 - SpW-RMAP interface
 - Connects to external host processor
 - Bridge interface to external ADC/DAC
 - Small memory tile

Related multi-core research

- **CRISP** (FP7)
 - Dependable & Reconfigurable multi-core SoC
 - 01-01-'08 / 30-04-'11
 - www.crisp-project.eu
- ALMA (FP7)
 - High-level (reconfigurable) multi-core programming and simulation tools
 - 01-09-'11 / 31-08-'14
 - www.alma-project.eu
- DeSyRe (FP7)
 - Fault-tolerant & reliable SoC and NoC
 - 01-10-'11 / 30-09-'14
 - www.desyre.eu

- Dynamically detect and circumvent faulty hardware
- Graceful degradation
- Fault-tolerant NoC
- Efficient multi-core programming

- MPPB platform hardware
- MPPB / Xentium[®] software development
- MPPB validation & benchmarking
- MPPB FDIR
- ASIC migration & radiation hardening
- MPPB lessons learned / future directions
- MPPB demonstration
- Q&A

- Software development overview
- Demo 1:

- FIR filter example
- Demo 2:
 - Design time reconfigurability
- Demo 3:
 - Introduction to FDIR

Software development

- Application controlled by the GPP (LEON)
 - LEON to peripherals: memory mapped communication
 - Peripherals to LEON: interrupt based notifications
 - Xentium cores used as kernel accelerators (FIR, FFT)
- Software development
 - LEON: C-code
 - Xentium: C-code + DSP kernel library

- Xentium binary(ies) linked to LEON executable
- LEON executable uploaded to the platform in SREC format via the UART

- Example: streaming application
 - 16-tap low pass FIR filter
 - ADC \rightarrow Xentium \rightarrow DAC
 - Interrupt based synchronization

LEON control

- 1) Initialize platform
 - 1) Configure ADC/DAC
 - 2) Configure Xentium
 - 3) Enable interrupts
- 2) Start the ADC
- 3) Handle incoming interrupts
 - ADC interrupt \rightarrow Start Xentium
 - Xentium interrupt \rightarrow Start DAC

- Demo 1 as baseline
- Design-time reconfigurable application:
 - Use either 1 or 2 Xentiums (FIR filters run in series)

- 2 possible data flows:
 - ADC \rightarrow Xentium 0 \rightarrow DAC
 - $\blacksquare \ \text{ADC} \rightarrow \text{Xentium 0} \rightarrow \text{DMA} \rightarrow \text{Xentium 1} \rightarrow \text{DAC}$
- Reconfiguration:
 - Add DMA and Xentium 1 interrupt routines
 - Start DMA instead of DAC when receiving the interrupt from Xentium 0
 - Modify source of the DAC data transfer

- Run-time FDIR with no interruption of service
 - Seamless task migration
 - No data loss or corruption
 - Useful for run-time dependability checks
- Demo:

FIR filter running on one Xentium

Demo 3: Task migration

- Processing is packet based
 - Seamless migration can be done on a packet boundary
- Pipelined tasks
 - Pipeline integrity must be preserved during the migration
- FIR filters have state (previous input samples)
 - Transfer states between Xentiums
- All components are memory mapped
 - Redirection of ADC/DAC input/output by updating source/destination addresses

© 2012 Recore Systers BNOC routes automatically modified

76

How can we help you?

www.recoresystems.com