ASTRIUM CONFIDENTIAL

Network Management and FDIR for SpaceWire Networks (N-MaSS FDIR)

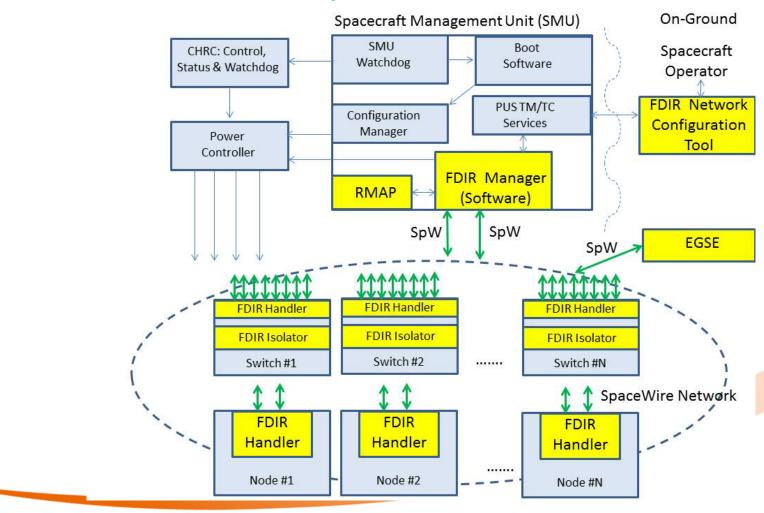
Astrium Satellites

John Franklin 10th April 2013

What is N-MaSS FDIR?

- Standardised service suite and protocol, providing autonomous Fault Detection, Isolation and Recovery solution for SpaceWire networks
- N-MaSS manages network topology and configuration, plus node identities and configurations
- N-MaSS FDIR autonomously maintains connectivity and performance of data handling networks in the presence of failures.
- Produce Demonstrator showing FDIR on a network
 - Network topology and scale captures the features of target space missions
 - Simulates the relevant failure mechanisms
 - Demonstrates fault-recovery with reliability, performance, resources
 - Breadboard based on COTS test-equipment hardware, with N-MaSS firmware & software

What is N-MaSS Project?

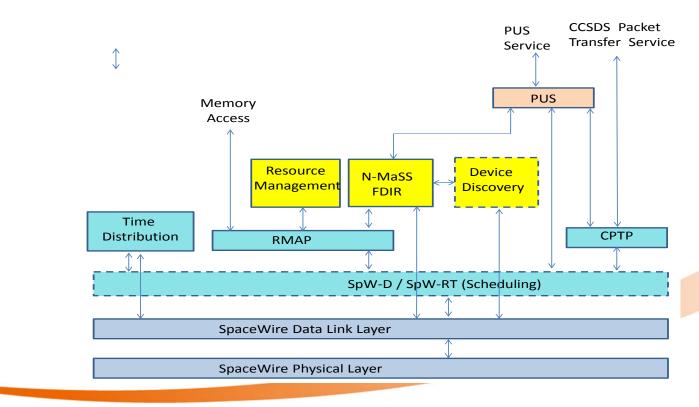

- ESA-sponsored study started Sep 2012, completing Mar 2014
- Produces draft ECSS Standard for N-MaSS SpW FDIR
- Team is led by Astrium Ltd
 - Responsible for specification & architecture;
 - System integrator; and FDIR Manager Software
- Astrium GmbH
 - Requirements capture from Bepi Colombo mission, and RAMS experience

4Links Ltd

- Design & manufacture of Demonstrator hardware
- Implementation and integration of N-MaSS firmware
- Integration of verification system
- Teletel SA
 - Design & manufacture of PVS test-kit showing N-MaSS node in software

N-MaSS System Architecture

All the space you need


System Level Behaviour

- N-MaSS protocol
 - Defines the means
 - Fully standardised
 - Implemented in firmware in Node and Router
- FDIR Manager
 - Defines the System Level Behaviour
 - Implemented in software (typ.) in On Board Computer (typ.)
 - Not standardised, but has user requirements e.g. speed, fault coverage, reliability, telemetry volume, resource usage

Context of N-MaSS

- Defined at the network layer to achieve efficient re-use for missions, whilst allowing incorporation of legacy equipment
 - Interwork with Plug and Play, SpW-RT and RMAP

Network Failure Modes Handled

- SpaceWire link failure (disconnection)
- SpaceWire link corruption (too frequent parity-error, or EEP)
- " "Babbling idiot", blocking the network at several layers
 - Transmitting without flow-control credit
 - Transmitting endless packet
 - Transmitting too many packets
 - Specific support to prevent OBC overload with high packet rate
- Failure of component switch, node or power-supply
 - Including "silent" failure transmits NULLs but no data
- Switch configuration error Routing Table, or other link configuration
 - Single Event Upset or permanent failure.
 - Prevent circulating packets on routing-loops
- Time Code Distribution failure
 - Not distributed to a section of the network
 - Corrupted, or incorrectly acts as a Time Code Master

All the space you need

Performance Needs

Performance

- Recovery Time 0.5 -1 seconds usually wanted
- Can be quicker (5 ms) for command and control applications
- Only Recovery speed is relevant (not Detection) except sometimes fast Isolation is wanted which is the Recovery Configuration (Safe Configuration)
- Determined by scheduling period of messages, & load on Onboard Computer software

Non-Availability

- Platform <10 seconds per year; large payload <1min / yr
- Given the hardware fault reliability rate (FITS), drives the Recovery Time
- Given sufficient redundancy resource, determines function of FDIR Manager

Reliability

- 95% over 5 years => 100 yr MTBF
- Very conservative link BER = 10⁻¹² => typical network one per 10 mins (never seen)
- Given sufficient redundancy resource, drives specification of FDIR Manager

Size of network

- Typically~12 nodes + 6 switches, two hops.
- Up to 60 nodes, 40 routers, 4-8 hops
- N-MaSS protocol does not limit, only network loading consideration

Functional Needs

Redundancy strategy

- Support of Cold & Hot Redundancy is needed
- Mostly 2:1, but also M:N
- Single root-cause fault tolerant; two successive faults; multiple faults with intervention
- Consider elements that are tied together (shared module or power-supply)

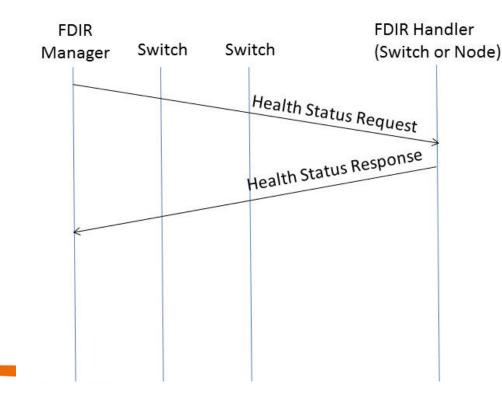
Network Addressing

- Logical addressing => reconfiguration of switch routing-table
- Path addressing => command use of redundant path in node
- Mixed logical & path addressing
- Group Adaptive Routing is used for FDIR, not congestion control
- GAR FDIR supports monitoring physical links, not logical arbitration.
- Level of Autonomy must be configurable
 - Statically determined to give architect / operator confidence & visibility
 - E.g. isolation only rather than recovery
 - Not autonomously swap OBC
 - Configurable to swap C&C links
 - Power-cycling may be delegated to OBC Central S/W

Resource Allocation

Physical footprint

- FDIR Manager in OBC cyclically scheduled 8-10 Hz; 1 MIPS; 1 MB RAM
- Reduced capability 0.1 MIPS, 10 kB version wanted by one prime
- Node IP core must fit easily into FPGA Actel RTAX1000 (300 FF, 600 LUT)
- Switch IP core should be ~500 FF, 1000 LUT


Network

- Network bandwidth load <2% => limits message size & frequency
- Typical housekeeping telemetry data-rate allowance 50 bps 10 kbps
- Statistical Network Health Report
- +Action Report with full network state and diagnosis (one fault per minute)
- Implementation performance
 - Define "Fast" and "Slow" class of Node for each Recovery Speed need
 - Slow = 25 ms = achievable in hardware or software
 - Fast = 1 ms = achievable in hardware only
 - Switch Configuration & Isolation should be Fast

Failure Detection mechanism

- FDIR Manager verifies network connectivity by periodically pinging Health Status Request messages to each component
- Each component returns a Health Status Response, from FDIR Handler

Failure Detection mechanism

- Network health can be determined by the FDIR Manager by
 - Missing HS Responses indicate either failed component or blocked or failed link
 - Delayed HS Responses indicate a blocked or congested link
 - Health flags within HS Response indicate either an intermittent link failure, or a network or node problem detected locally
- FDIR Manager must send HS Request messages
 - To every network component
 - Traverse every link, testing via Path Address
 - Plus every Logical Address (not just read-back what the switch thinks it is doing)
 - If a message is lost, repeat at least once before concluding that a link has failed

HS Request / Response formats

- HS Request:
- = HS Req header
- + HS Rsp prefix

First byte transmitted							
SpW Address	Logical	Protocol Identifier	Message Type				
	Address	N-MaSS = 0x03	HS Request = 1 or 3				
Destination Map	Destination Map	HS Response	HS Response				
		Prefix	Prefix				
HS Response	HS Response	HS Response	EOP	[
Prefix	Prefix	Prefix	LOP				
→ Last byte transmitted							

- HS Response
- Strips off header
- Appends HS fields
 - No buffering
 - Minimal storage

	Logical Protocol Identifier		Message Type	
Spw Address	Address	N-MaSS = 0x03		HS Response = 0x2
Time-Stamp			sage ID	Node Identifier: Manufacturer ID
Node Identifier:	Node Id	entifier:		Received
Component Type	Component Network Address			Port Number
Time Code	Destination Map	Destination Map		Component Health Status Value
Blocked	Link Health	Link Health		Link Health
Address	Status Value #0	Status Value #1		Status Value #
Link Health Status Value #N	Optional elements: Network Discovery	EOP		
	Node Identifier: Component Type Time Code Blocked Address Link Health	SpW AddressAddressTime-StampNode Identifier:Node IdComponent TypeComponent NoTime CodeDestination MapBlockedLink HealthAddressStatus Value #0Link HealthOptional elements:	SpW Address Address N-MaS Time-Stamp Mes Node Identifier: Node Identifier: Component Type Component Network Address Time Code Destination Map Blocked Link Health Address Status Value #0 Link Health Optional elements:	SpW AddressAddressN-MaSS = 0x03Time-StampMessage IDNode Identifier: Component TypeNode Identifier: Component Network AddressTime CodeDestination MapBlockedLink Health Status Value #0AddressStatus Value #0Link HealthOptional elements: FOR

- Multiple SpW messages per route =>high processing load on OBC (ISR)
- Prefix mechanism can daisy-chain between devices, to combine messages

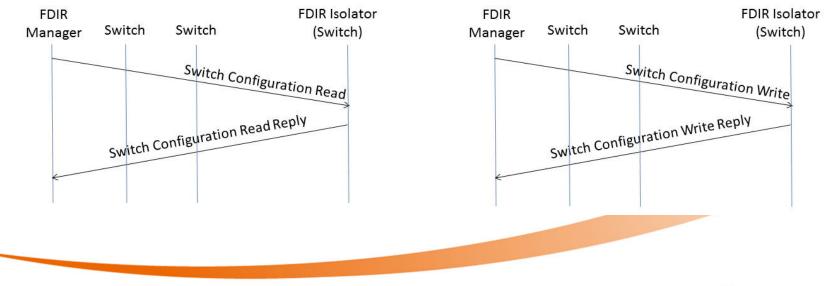
Recovery

- Define Initial Recovery action(s) and Recovery Configuration for each potential Diagnosed Fault
 - Pre-computed, uploaded to FDIR Manager from Network Configuration Tool
 - Execute actions starting from minimum impact; verify effect in Fault Detection mode
 - Operator pre-configures which type of actions and configurations are allowable

Initial Recovery actions do not permanently change network state –

- Free a network port by disabling and re-enabling a relevant switch port
- Refresh the configuration of a switch (single register or full), from secure storage
- Soft reset a switch or end-point
- Power-cycle a switch

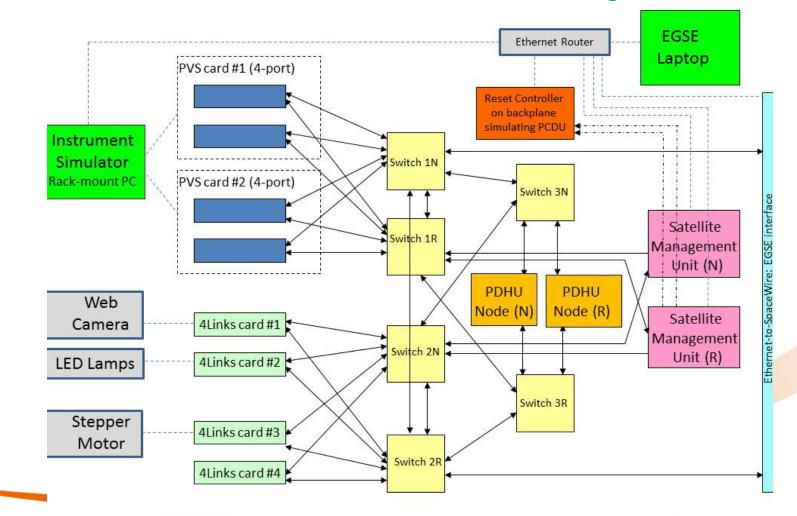
Recovery Configurations provide recovery for Permanent faults


- Swap network route(s) to different link(s): reconfigure routes in switch, or inform node
- Both hot and cold redundancy are catered for refresh configuration of components
- Redundant power-supply swapped for a nominal power-supply
- Safe Mode Configurations supported to Isolate critical components or routes

All the space you need

Recovery: Reconfiguration

- To recover a switch-configuration upset, protocol to Read and Write configuration must be standardised
 - Use subset of RMAP (reduced resource footprint)
 - Standardise register format for managed functions (e.g. routing table)
- N-MaSS refreshes, but does not manage, non-standardised configuration



Network Isolation in Switch

- Additional to & Faster than FDIR Manager software.
- Simplifies system behaviour by preventing faults from spreading
- Link timer prevents babbling-idiot nodes from congesting the network
 - Packet time-out disconnects link, timeout value configured per port
 - Prevents impact to network Quality of Service.
 - Kills a misbehaving endless packet, not the stalled victims
- Policing of maximum packet rate
 - Protects OBC from overload
 - Throttles babbling idiot sending too many packets, that are individually acceptable
- Recovers blockage from routing loops
 - Link timeout prevents stall by discarding packet tail; leaves circulating packet fragment
 - Discard when 3 packets on the same input port & Logical Address within 1 µs

Demonstrator Architectural Design

All the space you need