The SpaceWire-PnP Draft Standard

Peter Mendham Stuart Mills, Steve Parkes, Martin Kelly, Stuart Fowell

Agenda

- The draft standard
 - Conceptual view of a network
 - SpaceWire Network Management
 - Architectural approach
- Details
 - Communications protocol
 - "Configuration space"
- An example device
- Conclusions

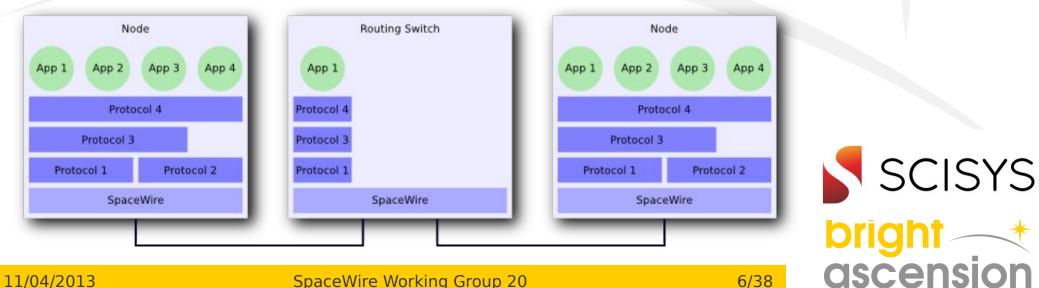
Network Discovery Protocols

- ESA TRP Activity investigating SpaceWire Network Management (Plug-and-Play)
- Project elements:
 - Requirements gathering
 - Protocol design
 - Protocol specification (draft ECSS standard)
 - Prototyping and validation
 - Demonstration
- An input was the previous draft protocol specification

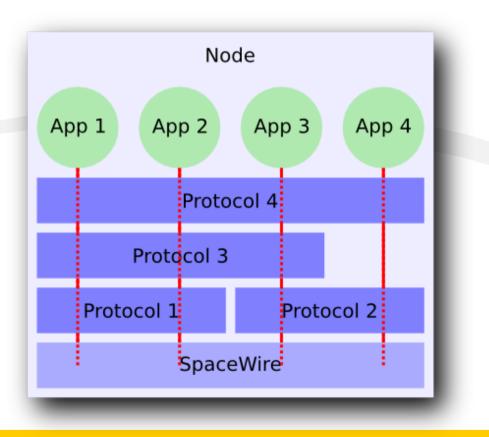
The SpW-PnP Draft Standard

11/04/2013

SpaceWire Working Group 20


Protocol Design

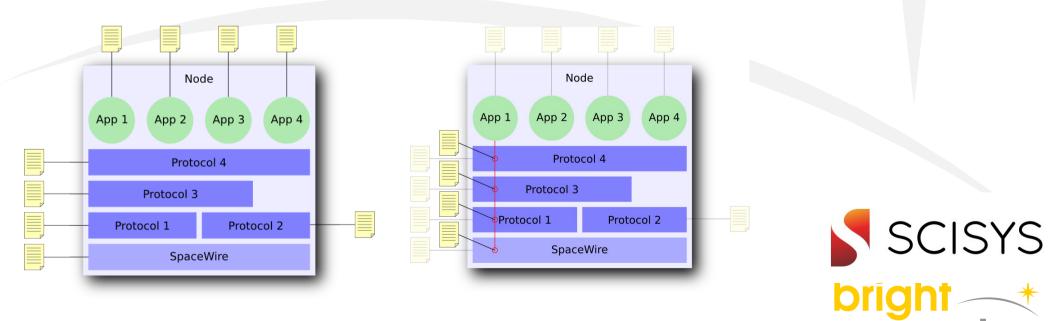
- Requirements for a plug-and-play protocol were gathered from various stakeholders
 - SCISYS
 - STAR-Dundee
 - TAS-F
- The protocol design was considered afresh based on requirements
- Inspiration was taken from the previous protocol specification where appropriate
- There are a number of key differences


View of SpaceWire Network

- Consistent view of a SpaceWire network based on a protocol stack
- Scope is all SpaceWire protocols not just SpaceWire
- Network comprises devices
- Each device hosts applications
 - An application is the logical source/destination of packets from the perspective of the complete SpaceWire protocol stack
 - Each application uses one or more protocols (inc. SpaceWire)

Protocol Stacks

- An application uses a stack of protocols to communicate
- The route data takes through the stack is a channel



7/38

SpaceWire Working Group 20

Network Management

- Each protocol and application have configuration or management parameters
 - Also the use of a protocol by a application has configuration parameters

ascension

8/38

SpaceWire Working Group 20

Principles

- Using this view the detection and configuration of
 - Devices
 - Protocols
 - Applications
- ...can be done in a uniform manner
- Once we can access the various configuration parameters we can
 - Perform discovery
 - Carry out complete SpaceWire network management
- These activities are independent of the underlying protocol used to access the device
 - Providing parameters are exposed through SCISYS a defined service interface

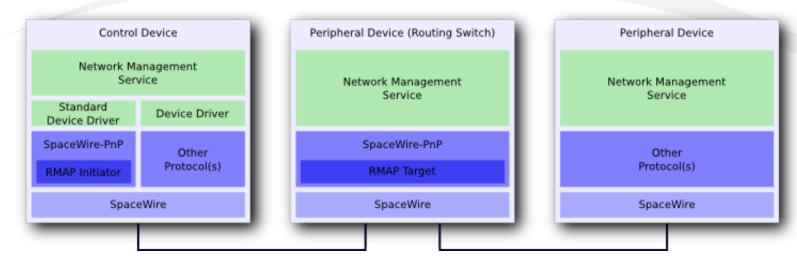
ascensi

Network Roles

- Devices on the network are referred to as
 - Control devices
 - Peripheral devices
- A control device is also typically a peripheral device
- Nodes and routing switches are devices
 - The routing switch configuration endpoint is part of the device
- Devices can be grouped together arbitrarily as units
 - Independent of topology
- Two **assumptions** (restrictions) on nodes
 - Up to 31 links
 - Links must be equivalent

SpaceWire Working Group 20

Network Management and Access Protocol


- Separate network management from the underlying communication protocol
- Provide support for many devices by permitting multiple protocols
 - Exposed using device drivers
 - Permits uniform support for existing devices
- Provide a standard protocol
 - Permits true interoperability
 - Necessary for truly open networks
 - Reduces implementation/validation complexities
 - Device driver for standard protocol is effectively null
 - Standard protocol based on RMAP

SCISYS

ascensio

NMS and Device Drivers

- Example shows single control device with two peripheral devices
- One peripheral device uses the standard protocol
- The other uses a non-standard protocol
- Both supported by the network management service

12/38

SpaceWire Working Group 20

NMS as an Application

- The network management service is itself an application
- It relies on a communication protocol
 - And SpaceWire, of course
- Quality of service can easily be added by adding protocols to the stack
 - Determinism
 - Reliability
 - Segmentation
 - Etc.
- Without modifying the network discovery service

13/38

SpaceWire Working Group 20

Control and Peripheral Devices

- Design exploration indicated that complexity is concentrated in the NMS on the control device
- Previous protocol work focussed on making peripheral devices as simple as possible
- This increased the complexity of the control device
- This also necessitated a high level of standardisation in control device behaviour
- Take a different approach
 - Move some of the protection mechanisms to the peripheral device from the control device
 - Protection mechanism is now enabled by peripheral device functions
 - Not reliant on control device behaviour or specific algorithms
 - Removes the need for complete standardisation of control devices

SCISYS

ascens

Standardisation Approach

- Standardise the minimum amount to ensure that
 - Requirements are met
 - Interoperability will be guaranteed
 - Immediate needs of the community are met
- Current proposal standardises
 - A communication protocol
 - The network management service on a peripheral device
 - This is effectively the "configuration space"
- No standardisation of network management service on control device necessary
 - Reduces standardisation and validation effort
 - More useful for community

15/38

SCISYS

ascensio

Current Draft Standard

- Includes overall architecture and rationale
- Simple protocol based on RMAP
- Protocol references RMAP but does not repeat it
 - This was not trivial to achieve due to structure of RMAP
- Protocol utilises the RMAP protocol "internally"
 - Not "layered" on top of RMAP from a logical perspective
 - May be layered in an implementation (not in scope)
 - Is layered from a standardisation perspective
- Peripheral device network management service
 - Meets all requirements
 - Is well defined, flexible and extensible (limited options)
 - Guarantees a minimum level of interoperability

SCISYS

ascensi

Communication Protocol

- Operates on regular-sized fields
 - Each field is 32-bit
- Fields are grouped into field sets
 - Each field set contains 16,384 fields
- A block of 32 field sets is assigned to each management parameter set
 - i.e. a block for each protocol, application and application-protocol use
- A field is therefore accessed by specifying
 - <Application Index>, <Protocol Index>, <Field Set ID>, <Field ID>
- Available operations
 - Read
 - Write
 - Compare and swap (CAS)

SpaceWire Working Group 20

NMS: Device Information

- Specifying Protocol Index 0 and Application Index 0 provides access to root device information
- Vendor and product ID and identification strings
- Version
- List of protocols
- List of applications
- List of which protocol each application uses
- Status
- Network level view:
 - Available links and whether they are active
- Unit ID
- Device ID and owner

SpaceWire Working Group 20

Protocol and Application Tables

- Device can provide lists of supported protocols and applications
- Each identifier by a vendors ID (0=standard ECSS) and a protocol/application ID

Brotocol Index	Vendor ID	Protocol ID	Protocol
1	0x0000	0x0000	SpaceWire
2	0x0000	0x0003	SpaceWire-PnP
3	0x0001	0x00F0	Vendor X Protocol A
4	0x0005	0x00F2	Vendor Y Protocol B

Table 4-1: Example protocol support list

Table 4-2: Example application support list

Application Index	Vendor ID	Application ID	Application	Protocol Use
1	0x0000	0x0001	Network Management Service	1,2
2	0x0001	0x0001	Vendor X Application A	1, 3
3	0x0005	0x3B97	Vendor Y Application B	1, 4

11/04/2013

SpaceWire Working Group 20

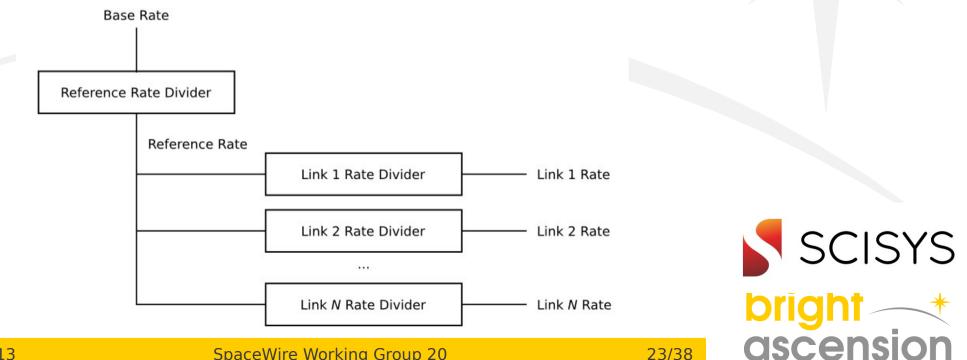
Device ID and Ownership

- Device IDs are assigned by control devices
- The control device assigning the ID is the owner
- Device ID may only be assigned using CAS
- When the Device ID is 0 (as on reset) all other fields are read-only
- When Device ID is assigned, the device records the reply address from the communications (RMAP) packet
- This is the owner address
- Once a Device ID is assigned other fields may be written to
 - Providing that the reply address of the request matches the owner address
- Owner address can be read so that the current device owner can be located
 - Determine validity of current owner

SpaceWire Working Group 20

SpaceWire Protocol

- Accessed using
 - Protocol index as specified in protocol support table
 - Application index 0
- Four field sets
 - Device configuration
 - Link configuration
 - Routing table (routing switches only?)
 - Time-code generation
- Fields are mandatory functions are optional
- If representation does not match your existing implementation don't use it
 - Plenty of space for vendor-specifics


SpaceWire Management

- Time-code counting and propagation
- Link state, transmit and watchdog rates
- Link errors
- Debug information (FIFO states)
- Routing table (all addresses: 1-255)
 - Port association
 - Address control
- Fields are not always self-describing
 - e.g. link watchdog and transmit rates

Rate Scheme

- Link transmit and watchdog rates specified using a two-tier scheme
- Will not match all implementations
 - In which case don't use it
- Does match the majority of current applications

23/38

11/04/2013

SpaceWire Working Group 20

SpW-PnP Protocol and NMS

- SpaceWire-PnP Protocol
 - Identified using application index 0 and protocol index as per table
 - Protocol information specifies maximum supported read and write lengths
- NMS Application
 - Identified using protocol index 0 and application index as per table
 - Just reports status of NMS application

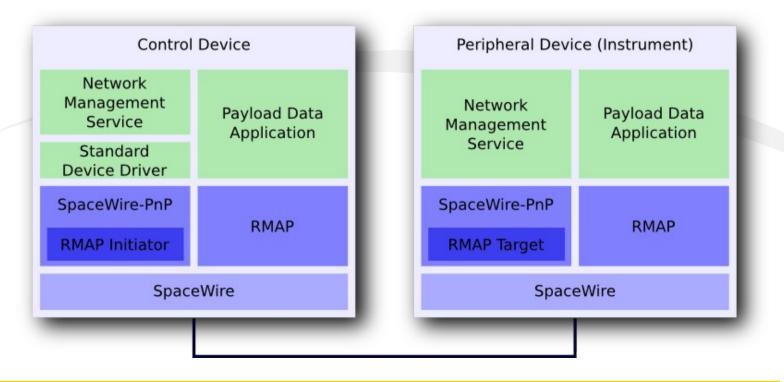
A Simple Example

11/04/2013

SpaceWire Working Group 20

An Example Device

- A hypothetical instrument
- A node
- Peripheral device only
- Two links
- RMAP interface to instrument data
- Instrument has various management parameters
 - Control parameters
 - Monitoring parameters



Example Device Protocols and Applications

- Instrument has two applications
- Uses two protocols

11/04/2013

 Each application uses a single protocol in addition to SpaceWire

SCISYS bright ascension

27/38

SpaceWire Working Group 20

Minimal Implementation

- Communications protocol
 - Read and CAS only
- Network Management Service
 - Device information only
 - 2 constant read-only fields
 - 4 non-constant read-only fields
 - Device ID (modifiable using CAS only)
 - Unused fields must read as zero

Fuller Implementation

- Provide capability to manage
 - SpW-PnP
 - RMAP
 - NMS
 - Payload data application
 - The use of RMAP by the payload data application
- Payload data provided over RMAP
 - Target or initiator you chose
- Payload monitoring and control using vendor-specific management space accessed using SpW-PnP SCISYS

ascensio

Conclusions

11/04/2013

SpaceWire Working Group 20

Summary

- SpW-PnP is a Network Management protocol
- Based on a clear concept of applications and protocols
- Network discovery is one application of SpW-PnP
- The current draft standard has evolved from previous proposed protocol
 - Re-assessed from first principles
 - Simplified
 - Reduced standardisation burden
- Split communications protocol from network management
- Extensible architecture which supports device drivers for non-standard devices
 SCISYS

11/04/2013

SpaceWire Working Group 20

31/38

ascensi

Applications

- Network discovery
 - Unknown or dynamic networks
 - Valuable for confirmation of known networks
- Management of SpaceWire protocol
- Management of vendor-specific
 - Applications
 - Protocols
- Exposure of management and monitoring parameter
 - FDIR

Conclusions

- SpW-PnP offers a network management solution for the complete SpaceWire stack
- Clear split between protocol and application
- Simple mandatory implementation
- Minimised standardisation
 - Achieves good interoperability
 - Low validation effort
- Builds on RMAP standard
 - Explicitly permits reuse of existing RMAP IP

Next Steps

- Change name SpW-NM?
- Testing and demonstration (NDP)
- Feedback from working group
- Early implementations (e.g. A-G Router)
- Define management parameters
 - SpaceWire Protocol (including FDIR parameters?)
 - NMS
 - SpW-PnP
 - RMAP?
 - CPTP?
 - SpaceWire-D?
 - SpaceFibre?
- SpW-PnP should define management parameters for SpW-PnP, NMS and SpW
 - Others should be in their respective standards
- Process for Vendor (and Protocol) ID assignment

34/38

SpaceWire Working Group 20

Feedback

- The draft standard is published as supporting material for this WG
- It will not be changing in the near future
- Feedback is very welcome
- The more the better!
 - peter@brightascension.com

Backup Slides

11/04/2013

SpaceWire Working Group 20

SpW Taxonomy

- The presented taxonomy makes it difficult to discuss a SpW network considering
 - The bigger picture (higher layers)
 - Network management
- From a SpW perspective the "higher layer" is always shared for a device
 - Node or router
- There are three levels at which the network makes sense
 - Devices (nodes/routing switches)
 - Endpoints (the boundary of SpW itself)
 - Applications (the logical source/destination of SpW protocol communications)

Notification

- The current standard does not include notification
- Design work did consider notification
- Proposal is a simple publish-subscribe model
- Underlying protocol provides
 - Subscribe
 - Unsubscribe
 - Publish
- You can then subscribe to a field just like reading or writing
 - Only a few fields would support subscription
- No QoS (e.g. retries) in protocol
 - To be added by additional layers (.e.g SpW-R)
- Still built on RMAP

