

ESA IP-Cores Offer

SpaceWire IPs

L. Fossati ESA/ESTEC 11/04/2013

Definitions

Intellectual Property Core – *definition from Wikipedia*:

In electronic design a semiconductor intellectual property core, IP core, or IP block is a **reusable unit of logic**, cell, or chip layout design that is the **intellectual property of one party**.

Actually ... a bit more complicated than assembling Lego bricks

Cooking a SOC ...

IP-Cores: Why - 1Reusing Designs

- Reuse in traditional engineering is part of the standard engineering process to save time and money
 - IP-Cores are the Building Blocks of Large Scale Electronic Designs

 Designing for reuse more expensive in first instance, but huge savings when reused

- High Return on Investment for the whole space
 European Industry
- Especially true for FPGA designs
- IP-Cores and Standards
 - Favor use of Standards by providing reference designs.
 - IP-Cores as de-facto standards

IP-Cores: Why - 2Securing Designs

- Counteract component obsolescence and discontinuity
 - guarantees the availability of some key functions
 - Virtually unlimited stock
- Facilitates Porting the design in alternative technologies
 - E.g. more advanced tech
 - Providing increased performance without the need for a redesign
- Promotes multiple sources
 - Similar, compatible components from different providers

IP-Cores: Why - 3

Enabling Higher Complexity Designs

ESA IP-Cores Service started in 2002

Role of **ESA in the IP-Core handling**:

- ✓ Promote/Manage their development
 - On-Going Developments (TRP/GSTP/ECI ...): CCSDS File Delivery Protocol, SpaceFibre, Mass-Memory Controller & File-System, CanOpen ...
- ✓ Licensing to European (space) Industry
 - Processing requests, producing licenses, solving legal issues ...
- ✓ Providing (limited) Support
 - Answering Technical Issues, Investigations in the Lab ...
- ✓ Centralize IP users' feedback
- ✓ Maintenance and Updates
 - Following the Collected feedback
 - Through contracts with Industry and internally (lab. activities)

ESA IP-Cores Service Licensing Conditions and Procedure

- 1) Complete Request Form at page: http://tinyurl.com/ESAIPCores
- 2) A License will be produced for signature by ESA and licensee
 - A CPQ is attached to the license to formalize the 5000€ handling fee
- 3) The requested IP-Core is delivered
 - Limited technical support is provided
- ✓ Each IP-Core has associated its licensing conditions
 - e.g. some can only be licensed in the frame of ESA activities
- ✓ A handling fee of 5000€ is associated to each IP-Core License
 - i.e. to each requested IP-Core and for each usage of it
 - See http://tinyurl.com/ESAIPCores for more details
- ✓ In some situations it is possible to obtain licenses for the use in non-ESA projects and, even, by companies not in ESA member states

Statistics - 1

Statistics - 2

SpaceWire IP-Cores

Currently Available

- 4 Synthesizable VHDL IP-Cores
 - SpaceWire-b CODEC, SpaceWire RMAP Dundee (UK)
 - SpaceWire-b CODEC + AMBA, SpaceWire RMAP Astrium (F)
- 1 SystemC Model
 - SpaceWire-b CODEC Qualtek (B)

Under Development

- SpaceFibre Synthesizable VHDL IP-Core
 - Star-Dundee (UK), ESA contract Available in 2014
- SystemC model of SpaceWire RMAP
 - Model of GRSPW2, ESA contract Terma (D) Available middle 2014

SpaceWire IP-Cores SpaceWire-b CODEC, Dundee

- Synthesisable VHDL implementing the SpaceWire-b CODEC
 - Produced in 2003 by the University of Dundee
 - Latest version, 2.3 from 2009
- Property of the University of Dundee/Star Dundee
 - Licensing through the ESA IP-Cores only for the use in ESA projects
 Other use-cases are served directly by StarDundee
- Extensive configuration options:
 - Tx, Rx clocks generation, DDR outputs, pipelining, etc.
- Extensively verified and used in ESA missions/programs:
 - o 108 total requests made to the ESA IP-Core service
 - Missions: BepiColombo, Gaia, JWST, Herschel, Sentinel(s), etc.
 - Present in various standard components: AT7911E, AT7912F, AGGA4,
 SCOC3, SpaceWire RTC (AT7913E), SpaceWire Router (AT7910E)

SpaceWire IP-Cores SpaceWire-b CODEC, Astrium

- Synthesisable VHDL implementing the SpaceWire-b CODEC with AMBA APB/AHB interface
 - Produced in 2003 by Astrium France, originally part of the SCOC activity
 - Latest version, 1.2 from 2004
- Property of the ESA
 - Licensing through the ESA IP-Cores for the benefit of the member states (and, in selected cases, worldwide)
- Limited configuration options:
 - Rx and Tx FIFO sizes
- Used in various ESA activities:
 - 63 total requests for it made to the ESA IP-Core service
 - Used in various Mass Memory, StarTracker, and EGSE designs
 - Missions ExoMars, BepiColombo, Proba, MASER

SpaceWire IP-Cores SpaceWire RMAP, Dundee

- Synthesisable VHDL implementing the SpaceWire RMAP layer
 - Produced in 2009 by the University of Dundee
 - Latest version, 1.0 from 2010
 - Includes the SpaceWire-b CODEC from Dundee
- Property of the University of Dundee/Star Dundee
 - Licensing through the ESA IP-Cores only for the use in ESA projects
- Extensive configuration options:
 - FIFOs size, watchdog, initiator and/or target, burst transfer and DMA sizes, etc.
- Used in various ESA activities:
 - 21 total requests for it made to the ESA IP-Core service
 - Missions: ExoMars, , etc.

SpaceWire IP-Cores SpaceWire RMAP, Astrium

- Synthesisable VHDL implementing the SpaceWire RMAP layer
 - Produced in 2008 by Astrium
 - Latest version from 2008, added to the ESA IP-Cores offer in 2013
 - Includes the SpaceWire-b CODEC from Astrium
- Property of the ESA
 - Licensing through the ESA IP-Cores for the benefit of the member states (and, in selected cases, worldwide)
- Limited configuration options:
 - o Rx, Tx, AHB FIFO sizes
- So far used in the SCOC3 System-on-Chip and CWICOM ASIC
- No requests yet to the ESA IP-Cores service, added to the offer at the beginning of 2013

SpW-b CODEC Performance

Results taken using Synopsys Synplify Premier Auto-constrained timing optimization

XC4VLX200	LUTs	BRAMs	Max Clk Speed
Dundee	463 (0%)		217 MHz System Clock 362.9 MHz Rx Clock
Astrium	1806 (1%)		152.0 MHz System Clock 267.2 MHz Rx Clock

A3PE3000L	Core Cells	BRAMs	Max Clk Speed
Dundee	1089 (1%)		77.8 MHz System Clock 111.6 MHz Rx Clock
Astrium	4792 (6%)		62.4 MHz System Clock 106 MHz Rx Clock

RTAX2000S	Combinatorial	BRAMs	Sequential	Max Clk Speed
Dundee	475 (2%)	0	377 (4%)	94.3 MHz System Clock 184.3 MHz Rx Clock
Astrium	2031 (9%)	0	1216 (11%)	89.7 MHz System Clock 148.9 MHz Rx Clock

SpW-RMAP Performance

Results taken using
Synopsys Synplify Premier
Auto-constrained timing
optimization

XC4VLX200	LUTs	BRAMs	Max Clk Speed
Dundee	6246 (3%)		105.2 MHz System Clock 174.6 MHz Rx Clock
Astrium	5407 (3%)		115.3 MHz System Clock 259.2 MHz Rx Clock

A3PE3000L	Core Cells	BRAMs	Max Clk Speed
Dundee	13967 (19%)		33.3 MHz System Clock 96.9 MHz Rx Clock
Astrium	15404 (19%)		40.7 MHz System Clock 106.8 MHz Rx Clock

RTAX2000S	Combinatorial	BRAMs	Sequential	Max Clk Speed
Dundee	6708 (31%)	10 (15%)	3210 (30%)	59.1 MHz System Clock 142.5 MHz Rx Clock
Astrium	6727 (31%)	3 (4%)	2567 (24%)	58.6 MHz System Clock 150.9 MHx Rx Clock

ASSPs: Link Speed

AT7911E	SpaceWire-b CODEC	Atmel MG2RT 0.5µm	200 Mbit/s
AT7912F	SpaceWire-b CODEC	Atmel MG2RT 0.5µm	200 Mbit/s
SCOC3	SpaceWire-b CODEC	Atmel ATC18RHA 0.18µm	160 Mbit/s
SCOC3	SpaceWire- RMAP, Astrium	Atmel ATC18RHA 0.18µm	160 Mbit/s
AT7913E	SpaceWire-b CODEC	Atmel ATC18RHA 0.18µm	200 Mbit/s
AT7910E	SpaceWire-b CODEC	Atmel MH1RT 0.35µm	200 Mbit/s

ASSPs: Link Speed

AT7911E	Triple SpaceWire links High Speed Controller	200 Mbit/s
AT7912F	Single SpaceWire link High Speed Controller	200 Mbit/s
SCOC3	Space Computer on a chip	160 Mbit/s
SCOC3	Space Computer on a chip	160 Mbit/s
AT7913E	SpaceWire Remote Terminal Controller (RTC)	200 Mbit/s
AT7910E	SpW-10X SpaceWire Router	200 Mbit/s

Harware Modeling: Activities

Thank You for Listening

For more information:

- <u>Luca.Fossati@esa.int</u>
- http://microelectronics.esa.int
- > IP-Cores Workshop in September 2013 at ESTEC

Overview ESL Design Flow

Functionality refinement

SystemC and TLM

SystemC

- ✓ IEEE standard, implemented as a set of C++ classes
- ✓ Standard C++ compiler can be used to generate an executable specification
- ✓ Addresses various levels of abstraction down to RTL

Transaction Level Modeling (TLM)

- Well-established methodology for modeling complex systems
- ✓ Separates communication from computation
- Modules communicate with the rest of the world by performing transactions
 - Instead of modeling every single transferred bit, data structures are exchanged

Virtual Platform

