

SpaceWire-RT Update

EU FP7 Project
Russian and European Partners
SUAI, SubMicron, ELVEES
University of Dundee, Astrium GmbH

SpaceWire Contents

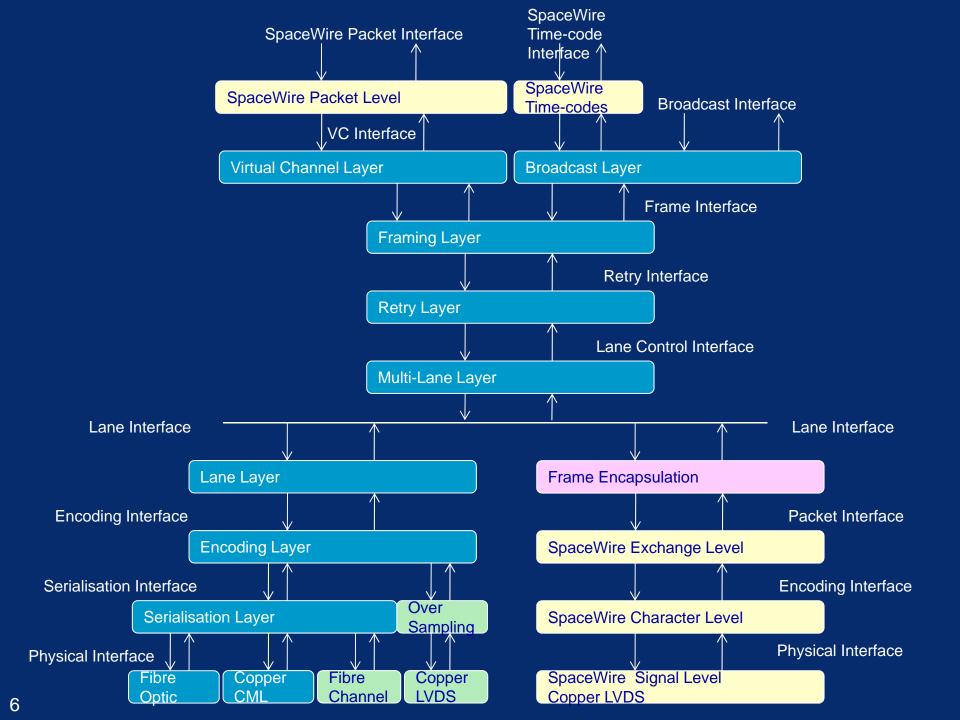
- SpaceWire-RT project
- SpaceWire-RT protocols
- Oversampled SpaceFibre
- SpaceFibre over SpaceWire

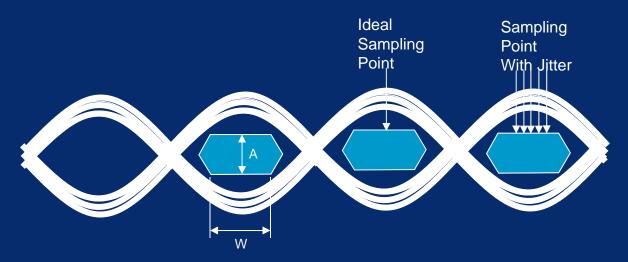
Overview of SpaceWire-RT Project

Aims

- The SpaceWire-RT research programme aims to:
 - Conceive and create communications network technology,
 - suitable for a wide range of demanding space applications
 - where responsiveness, determinism, robustness and durability are fundamental requirements.
- A critical component technology for future spacecraft avionics and payloads.
- QoS layer will be developed to support mixed avionics and data-handling applications.

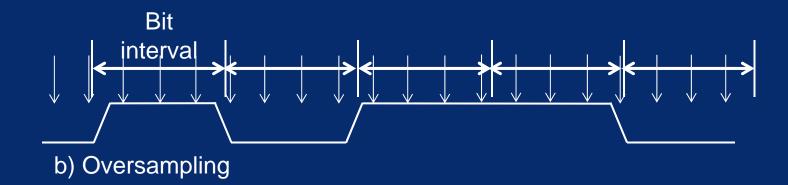
	Distance	Rate	Latency	Packet size	QoS
Data-handling network	Short to long	Low to very high	Not important	Short to long	Reserved bandwidth
Control bus	Short to long	Low	Low	Short to long	Deterministic delivery
Telemetry bus	Short to long	Low	Low	Short	Reserved bandwidth
Computer bus	Short	Very high	Low	Short to long	Reserved bandwidth
Time-sync bus	Short to long	Low	Very low	Short	High priority
Side-band	Short	Low to high	Very low	Short	High priority


SpaceWire-RT Research Plan

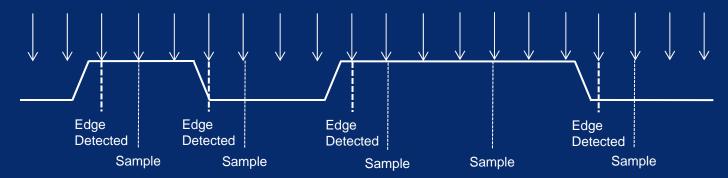


Oversampling SpaceFibre

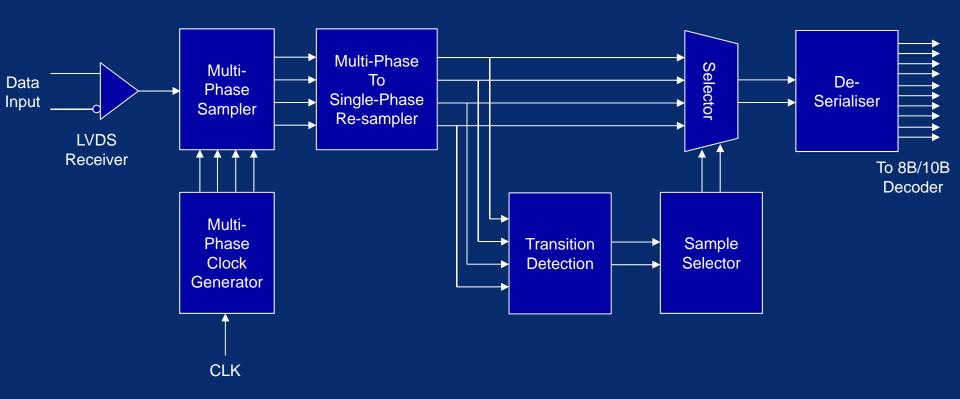
- Aims:
 - Simple implementation of SpaceFibre
 - In standard flight FPGA
 - No special clock and data recovery (CDR)
 - E.g. Phase-locked loop
 - Operate at modest speeds
 - E.g. 200 Mbits/s
 - Use LVDS instead of CML
 - Provide all the benefits of SpaceFibre
 - QoS
 - FDIR
 - Galvanic isolation
 - Key issue is recovering the data from the bit stream



a) Received eye pattern and sampling



SpaceWire-RIP Oversampling SpaceFibre


SpaceWire-RIP Oversampling SpaceFibre

c) Selecting the sample

SpaceWire Oversampling Architecture

Oversampling SpaceFibre

Advantages:

- Clock recovery does not require PLL
- Covers 1 Mbits/s to 200 Mbits/s (TBC) speed range
- Lower cable mass than SpaceWire
- Minor extension to the SpaceFibre standard
- LVDS interfaces available on most FPGAs
- LVDS proven in space flight
- May save some power compared to CML (TBC)
- Can interoperate with SpaceFibre-LVDS depending on speed used
- Disadvantage:
 - Limited maximum speed

Reference:

Sawyer N, "Data Recovery", Xilinx Application Note
 XAPP225 (v2.5) July 11, 2005.

SpaceFibre over SpaceWire

- Basic idea is
 - Replace SpaceFibre lane with SpaceWire
 - Encapsulate all SpaceFibre frames and control words
 - Into individual SpaceWire packets
 - E.g. a SpFi ACK would be encapsulated into its own SpaceWire packet
 - Provides
 - End to end flow control
 - Retry
 - Limited QoS
 - Scheduled
 - Limited bandwidth reservation
 - Does not provide
 - Full QoS
 - Broadcast messages (with high priority)

Encoding

Distance

Packet Size

Latency (TBC)

Cable Mass

Power (TBC)

QoS Priority

QoS Scheduled

QoS Best Effort

Determinism

Fault Detection

Fault Isolation

Reliability

Retry

Broadcast Message

SpaceWire compatible

Level

Speed Range

Galvanic Isolation

SpaceWire Packet

QoS BW Reserved

8B/10B

100 m

Arbitrary

Yes

Yes

 $1 \mu s$

Yes

Packet level only

< 30g/m

< 200 mW

0.1 to 20 Gbits/s

50 Gbits/s in future

RT) Proliminary Characteristics

8B/10B

10 m

Arbitrary

Yes

Yes

 $1 \mu s$

Yes

Packet level only

< 40g/m

< 200 mW

1 to 600 Mbits/s

1 to 200 Mbits/s OS

i over SpW

1 to 300 Mbits/s

Data-Strobe

10 m

Arbitrary

10 1 µs

~87 g/m

< 400 mW

Yes with limitations

No

Yes

No

Yes

Yes

No

Yes

Yes

Yes

Yes

Yes

Yes

Spaceviis			Haracteris	.103
	Table 11	-1 SpaceWire-RT Proto	ocol Characteristics	
Characteristic	SpFi-FO	SpFi-CML	SpFi- LVDS	SpFi over SpW
Media	Fibre Optic	Copper CML	Copper LVDS	Copper LVDS

8B/10B

5 m

Yes

Yes

 $1 \mu s$

Yes

Packet level only

< 60g/m

< 200 mW

Arbitrary

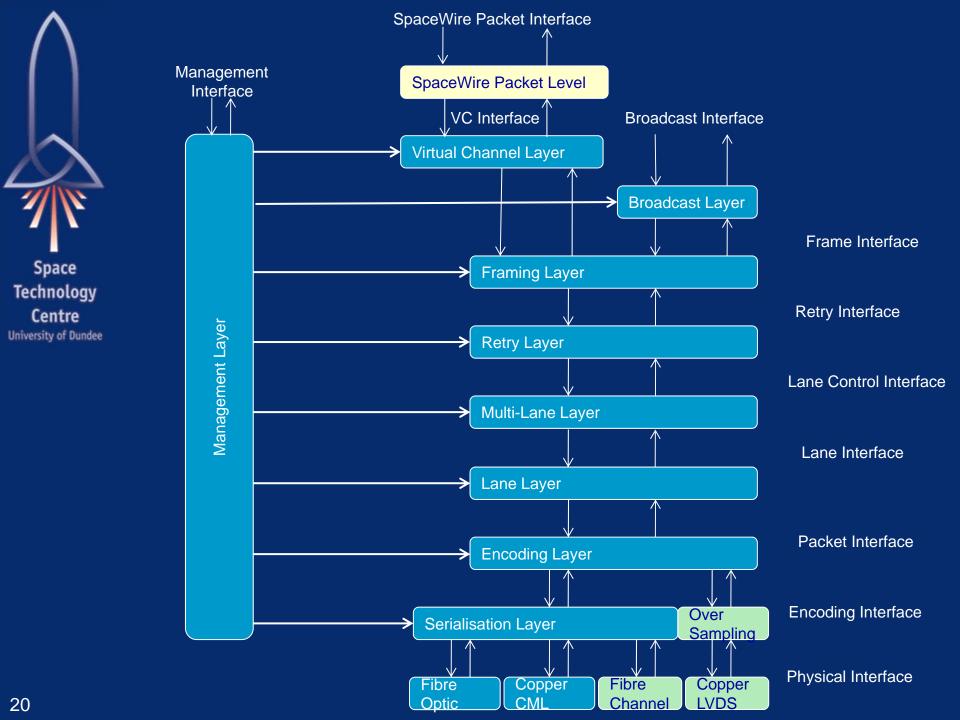
0.1 to 20 Gbits/s

50 Gbits/s in future

SpaceWire	Preliminary Characteristics
	Table 11-1 SpaceWire-RT Protocol Characteristics

Summary

- SpaceWire-RT aims to
 - Extend SpaceFibre to cover
 - Broad range of space applications
 - Including mixed data-handling and avionics
- SpaceFibre
 - QoS Mechanisms
 - FDIR capability
 - Protocol validation by simulation
 - Operation over different media
 - CML
 - LVDS
 - Fibre Channel physical layer


Summary

- SpaceFibre over SpaceWire
 - Provides
 - End to end flow control
 - Retry
 - Has some significant limitations
 - QoS not maintained over SpaceWire network
 - Full QoS requires special SpaceWire routers
- Simpler to bridge existing SpaceWire devices to SpaceFibre network
- VHiSSI EU FP7 project includes research on such a bridge device

Summary

- Oversampled SpaceFibre
 - Lower speed SpaceFibre
 - Galvanic isolation
 - All SpaceFibre QoS and FDIR capabilities
 - Uses LVDS
 - Can be implemented in current flight FPGAs
 - Simple CDR mechanism
 - Saves on cable mass
- Currently designing prototype
 - Expect to test this early 2013

