Guaranteeing real-time property

Guaranteeing real-time property of SpW network based on SpW-D

24-Apr.-2012

Hiroaki TAKADA

Executive Director and Professor Center for Embedded Computing Systems, Nagoya Univ. Chairman, TOPPERS Project Email: hiro@ertl.jp URL: http://www.ertl.jp/~hiro/

Self Introduction - Hiroaki Takada

Current Positions

- Professor, Nagoya University
- Executive Director, Center for Embedded Computing Systems (NCES), Nagoya University
- Chairman, TOPPERS Project and several others

Major Research Topics

- real-time operating systems for embedded systems
- real-time scheduling and analysis
- electronic system-level design of embedded systems
- automotive embedded systems and network
- energy optimization for embedded systems
- functional safety

TOPPERS Project

- Develop various open-source software for embedded systems including RTOS and promote their use.
- Incorporated as a non-profit organization in 2003.

Building a widely used open-source OS as Linux in the area of embedded systems!

Applications of TOPPERS OS

- TOPPERS OS is widely used in the industries.
 - consumer applications
 - industrial applications
 - automotive systems
- TOPPERS OS is planned to be used in some space systems.

Table of Contents

- Joint Project of JAXA/ISAS and NCES
- Approach of our Investigation
- Additional Requirements
- Concepts/Functions Added to SpW-D
 - Subnet Concept
 - Flexible Time-Slotting
 - Mode Concept
 - Split RMAP Transaction
 - Schedule Information
 - Additional FDIR Mechanisms (optional)
- Current and Future Activities

Joint Project of JAXA and NCES

 JAXA and NCES are conducting a joint project for spreading the use of SpW to wider range of applications.

Goals of the Project

- to propose a flexible methodology for guaranteeing the real-time property of SpW network based on SpW-D
- to develop a software platform (real-time kernel + SpW middleware) supporting the proposed methodology

Study Group on SpW Real-Time Property

- ISAS and NCES host a study group with Japan SpW User Group (including NEC, MELCO, and MHI) for:
 - gathering requirements on the SpW real-time property guaranteeing methodology from industries,
 - investigating the experience and problems obtained from the development of ASTRO-H, and
 - collecting opinions on the proposed methodology.

Approach of our Investigation

Starting Point

- SpW-D standard under discussion
 - [1] P. Armbruster: SpW-D Overview and Trade-offs, 16th SpW WG meeting.
 - [2] S. Parkes: SpW-D Proposed Contents of Standard, 17th SpW WG meeting.
- ASTRO-H SpW Network Design Criteria
- Gathering Additional Requirements
 - from space system industries
 - from the experience and problems obtained from the development of ASTRO-H

Some Concepts/Functions Added to SpW-D

Some additional concepts/functions are added to SpW-D for satisfying the additional requirements.

ASTRO-H SpW Network Diagram

Additional Requirements

Upper Layer Protocol

- Any upper layer protocol on SpW should be supported.
 - The upper layer protocol is responsible for the packet loss detection/recovery, and for packet segmentation/ desegmentation (when necessary).

Assumption on RMAP Implementation

 High throughput should be obtained even when RMAP target nodes are implemented with software.

More Extensive FDIR Mechanisms

- Additional FDIR mechanisms need to be specified for handling some failures that are not fully covered by the current SpW/SpW-D FDIR mechanisms.
- Incorporated as optional features because existing SpW devices cannot support them.

Concepts/Functions Added to SpW-D

Subnet Concept and Flexible Time-Slotting

- A SpW network can be divided into some subnets.
- The length and the number of time-slots can be different for different subnets.

Mode Concept

- Subnet and schedule can be changed for each mode.
 Split RMAP Transaction
 - RMAP reply packet transferred in different time-slot should be allowed.

Accommodation of Any Upper Layer Protocol

- Limiting upper layer protocol is not necessary.
- Any SpW packet can be allowed to be transferred. <u>Additional FDIR Mechanisms (optional)</u>

Subnet Concept

- A SpW network can be divided into some subnets which do not share any link.
 - Routers and end-nodes can be shared as long as there is no interference.
- Packets transferred among different subnets are inhibited.
- SpW-D can be applied on a per subnet basis.

Flexible Time-Slotting

- Time-slots are delimited by the time-codes whose time values are multiples of 2ⁿ (n = 0,...,6), where n is determined for each subnet.
 - When n = 0, Time-slots are delimited by all timecodes (corresponds with current SpW-D standard).
 - Effective in improving throughput with longer timeslots, when the time-code period needs to be kept short by different reasons.
- ► The number of time-slots is 2^{*m*}, where *m* is determined for each subnet.
- When n+m > 6, the mechanism to distribute extended time-code is necessary.

Time-Slotting Examples

time-code 2 3 5 6263 62630 3 4 6 8 0 2 4 0 extended $\mathbf{0}$ 3 3 0 0 0 $\mathbf{0}$ 0 $\mathbf{0}$ 0 $\mathbf{0}$ $\mathbf{0}$ $\mathbf{0}$ 1 1 *time-code*

Hiroaki Takada

Mode Concept

- The concept of "mode" is introduced to cope with the following cases.
 - Operational mode of the system is changed.
 - Packet routing and schedule need to be changed in case of a link failure.
- Subnet, time-slot, and schedule (of SpW-D) can be determined for each mode.
 - Mode change can occur at the end of a time-slot.
- The mechanism to distribute "current mode" to all nodes in the SpW network is assumed (similar to the distribution mechanism of extended time-code).
 - The mode distribution mechanism is out of the scope of our investigations.

Split RMAP Transaction

Motivation

- When an RMAP target node is implemented with software, the maximum RMAP reply delay is quite long, thus degrading the throughput.
 - RMAP reply delay = the time since an RMAP command is received until the RMAP reply is prepared.

Solution

- An RMAP target node is allowed to send the RMAP reply in predetermined later time-slot.
 - Only intelligent target nodes (implemented with processors and software) are allowed to use this option.

RMAP Transaction Examples

Schedule Information

- Each intelligent end-node has a schedule information which shows the packets that can be transferred.
- A schedule information holds a list of following data for each *link*, for each *mode*, and for each *time-slot*.
 - packet type (RMAP command, RMAP reply, others) when the packet type is not RMAP reply:
 - list of destination nodes
 - total size of packets
 - when the packet type is RMAP command:
 - total size of RMAP reply packets
 - time-slot number in which the RMAP reply is scheduled
 - a list of reply addresses for each destination
 - when the packet type is RMAP reply:
 - RMAP initiator node
 - time-slot number in which the RMAP command is sent

Schedule Information Example (1)

example schedule information for a link of an intelligent end-node for a mode

time-slot number	packet type	destination node list/ RMAP initiator node	RMAP command/ reply time-slot number	total size of packets	total size of RMAP reply packets
0	RMAP command (non-verified write)	11, 12, 13, 14	0	1024	20
	others	15		500	
2	others	16		2000	
8	RMAP command (read)	11, 12, 13, 14	8	40	1024
10	others	17		2000	
12	RMAP command (read)	11, 12, 13, 14	12	40	1024
62	others	21		2000	

* The list of reply addresses for each destination is omitted.

Schedule Information Example (2)

- RMAP commands in time-slot 0 are replied in the same time-slot (non-split RMAP transaction).
- RMAP commands to in time-slot 8 and 12 are replied in time-slot 10 and 14, respectively (split RMAP transaction).

time-slot number	packet type	destination node list/ RMAP initiator node	RMAP command/ reply time-slot number	total size of packets	total size of RMAP reply packets
0	RMAP command (non-verified write)	11, 12, 13, 14	0	1024	20
	others	15		500	
2	others	16		2000	
8	RMAP command (read)	11, 12, 13, 14	10	40	1024
10	others	17		2000	
12	RMAP command (read)	11, 12, 13, 14	14	40	1024

Schedule Information Example (3)

To the RMAP command received in time-slot 5 and 13 from node 1, this end-node replies in time-slot 6 and 14, respectively (split RMAP transaction).

time-slot number	packet type	destination node list/ RMAP initiator node	RMAP command/ reply time-slot number	total size of packets	total size of RMAP reply packets
0	RMAP command (non-verified write)	11, 12, 13, 14	0	1024	20
	others	15		500	
6	RMAP reply	1	5		
8	RMAP command (read)	11, 12, 13, 14	9	40	1024
10	others	17		2000	
12	RMAP command (read)	11, 12, 13, 14	14	40	1024
14	RMAP reply	1	13		

Hiroaki Takada

Additional FDIR Mechanisms (optional)

Discard packet at the end of each time-slot

- The current SpW/SpW-D FDIR mechanisms do not cover the following cases.
 - A faulty end-node sends a long packet that is not fit in the time-slot.
 - A faulty end-node stops sending FCT while it receives a packet.
- At the end of each time-slot, routers and end-nodes that do not finish sending/receiving a packet should do the following FDIR processes.
 - When the node do not finish receiving a packet, it discards the data in its receive buffer, sends FCTs, and discards succeeding data until an EOP/EEP is received.
 - When the node do not finish sending a packet, it discards the remaining data and tries to send EEP.

Inhibit packet transferred among different subnets

 With the introduction of subnet concept, routers should inhibit the packets transferred among different subnets.

Network Guardian

- an additional device connected between a router and a end-node for adding optional FDIR mechanisms to an existing SpW device.
- If the network guardian has the schedule information that the end-node should have, it can detect illegal packet transfers and discard them.

Current and Future Activities

Methodology Guidebook

- We are making a guidebook that explains the proposed methodology for guaranteeing the real-time property of SpW network.
- A recommended calculation method whether a certain set of packets fit in a time-slot is included.

Software Platform Development

- We will develop a SpW middleware running on our real-time kernel and supporting tools that support the proposed methodology.
 - The SpW middleware is responsible for sending packets following the given schedule information.
- We plan to release "SpaceWire OS" consisting of the real-time kernel and the SpW middleware next year.