

Summary

- The work presented is part of the ESA funded SpaceWire Backplane activity reference TEC-EPD/2010.88
- The activity tasks comprise:
 - Task 1: System analysis and requirements capture
 - Functional and performance requirements
 - Connector layout, dimensions, pinout etc
 - Constraints e.g. Slot count, fault tolerance
 - Compatibility with future space qualification to ECSS standards
 - Document outputs are: Analysis Report & Requirements Specification
 - Task 2: Survey of state of the art backplane technologies
 - Task 3: Drafting of SpW backplane specification (ECSS format)
 - Task 4: Backplane SpW connector design, manufacture and test
 - Task 5: Activity synthesis and final presentation

Work Logic

Schedule

Task 1 Description

- Identify applications for SpaceWire Backplane
- Analyse these applications
 - SpW architecture (network and power)
 - Number of modules
 - Physical attributes (Form factor, connector location etc)
 - Connector characteristics (number of SpW ports and discrete signals)
 - Mechanical robustness (Stiffness of board)
 - Thermal management (Power dissipation)
 - Fault tolerance
 - Redundancy
- Requirements consolidation
- Requirements review involving SpW WG

Applications for SpW Backplane

- Any Spacecraft unit that contains a number of modules which:
 - Need to communicate with data rate in the range 10Mbps to 2Gbps
 - Contain functions that are suitable for re-use in future spacecraft
- For example:
 - Spacecraft Management units
 - Data handling units
 - Platform control units
 - Instrument control units
 - Mass memory units
- Perhaps SpW Backplane not as applicable to:
 - Low rate Remote Interface Units (RIUs)
 - Instrument and sensor front-end applications

Data handling application for SpW Backplane

- 8 modules in non-redundant "unit" above, but we may have more I/O modules
- Typical spacecraft non-redundant unit has 3 to 8 modules
- MARC architecture combines prime and redundant on one backplane so twice the number may need to be accommodated

SpW "Passive" Backplane architectures

Ad-hoc:

- Routers are on the modules
- Modules have 1 to N ports

Centralised routing

- Routers located in one module
- Modules have 1 port
- Router module has "N" ports

SpW "Active" Backplane Architectures

Basic Active Backplane

- Routers are on the backplane
- Modules have 1 backplane port

Redundant Active Backplane

- Routers are on the backplane
- Modules have 2 backplane ports

Physical attributes – compatibility issues

- Board size: large or small?
 - Adopt existing standard eg Eurocard, PCI express, microTCA?
 - Existing spacecraft board sizes are driven by device level packaging:
 - 352 pin quad flat packs
 - BGA technology as used for miniature terrestrial applications not generally used
 - Backplane connector
 - Unit external interface count and connectors
- Connector card guide specification, allowing for thermal conduction paths for TBD watts
- Board location (e.g. Simple slot, Bircher, Camloc or Wedgeloc)
- Front panel and associated mechanical interfaces

PCB board size (1)

184mm x 170mm Flight PCB

- Board sizes less than 160mm x 160mm generally not used for common packaged parts due to:
 - Restricted area for components
 - Large area occupied by connectors

PCB board size (2)

- Extended double Eurocard size is a terrestrial standard board size:
 - 233mm x 220mm
- Other common Eurocard sizes:

Single: 100mm x 160mm

Double: 233mm x 160mm

Physical attributes (unit level example)

Horizontal card stack not precluded

Connector characteristics

- SpW signalling rate compatible (up to 400 Mbps)
- SpFi Cu capable? (minimum 2Gbps, up to 5Gbps for FR4 PCB)
- Minimum of 2 SpW ports (4 SpFi Cu ports):
 - 8 impedance controlled (100 Ohm) differential pairs required

• Power:

- Minimum of 2 pins, normally are paralleled up with many more grounds than +\- power rails
- +28V and +5V minimum capability
- At least 4 Amp rating (20 Watts at 5V)

• Signal lines:

- Ideally avoided but... this is sometimes not practical
- Typically single ended, clocks, synchronisation, on/off, FDIR etc.
- 20 to 40 pins adequate?

Backplane connector interfaces - example

PCB stiffeners

232mm x 220mm PCB with "H" stiffener

- PCBs with unsupported spans of >100mm generally require stiffeners
- The stiffening required is dependant on the component masses (user controlled)
- Stiffeners are inconvenient when large components need to be placed!
- Stiffener shown is also a thermal conduction path to the edge of the board

Fault tolerance and redundancy

- Should this be defined by the backplane specification?
 - Backplane specification appears to be driving the unit design!
- Yes, we must:
 - Prevent failure propagation from a module into the Backplane and other modules, this is a shared responsibility between Backplane and Module and hence responsibilities must be defined
 - Allow for redundancy (and allocate nominal and redundant ports)
 - Consider failure scenarios in backplane and module:
 - Failed SpW port
 - Failed power supply
 - Failed discrete signals

Task 1 – recap... and a request for your inputs!

- Identified applications for SpaceWire Backplane
- Analysed these applications
 - SpW architecture (network and power)
 - Number of modules
 - Physical attributes (Form factor, connector location etc)
 - Connector characteristics (number of SpW ports and discrete signals)
 - Mechanical robustness (Stiffness of board)
 - Thermal management (Power dissipation)
 - Fault tolerance
 - Redundancy
- To do:
 - Requirements consolidation
 - Requirements Review involving SpW WG

