
Time synchronization in
SpaceWire networks

Marko Isomäki, Sandi Habinc

Aeroflex Gaisler AB
Kungsgatan 12, SE-411 19 Göteborg, Sweden

marko@gaisler.com

www.Aeroflex.com/Gaisler

Introduction

Time synchronization in SpaceWire networks
was discussed at the 15th WG meeting. That
presentation focused on the technical details of a
proposed protocol (CUCTP) for time synchronization.

This presentation will give a brief summary of the major
technical aspects of the protocol while the major part
focuses on system level aspects, a possible integration
with SpaceWire-D and some discussion on potential
drawbacks mentioned at the previous meeting.

Background

 SpaceWire is an asynchronous network i.e.
there is no common clock signal being
distributed for the communication meaning that
each node is responsible for its own clock.

 The SpaceWire-D protocol is intended to provide
means to handle real time traffic on a SpaceWire
network capable of supporting control loop
frequencies between 1 Hz and 1 kHz.

 Other important properties of the protocol are high
throughput, simplicity and low/medium
implementation cost.

 Command & Control and Data traffic are multiplexed
on the same links/network.

Scheduling

 The method to achieve the requirements is
to schedule transfers on the network level to

avoid contention.
 This requires that all nodes in the network have a

local clock which is synchronized to a common
master clock.

 The node containing the master clock is responsible
of distributing the master time to the other nodes.

 This is done through a time distribution protocol
proposed at the previous WG meeting.

CUCTP time synchronization in a
SpaceWire network

CUC ET

NODE (SLAVE)

CUC ET

NODE (SLAVE)

CUC ET

NODE (SLAVE)

CUC ET

NODE (MASTER)

ROUTER ROUTER

 Each node contains an Elapsed Time counter based
on the CCSDS Unsegmented Code (CUC).

 One node is selected to be the time master and periodically sends
time-codes and packets to keep the other nodes synchronized

 When synchronized the ET counters can be used for SpW-D
scheduling.

CCSDS Unsegmented Code (CUC)

 CCSDS defines several different formats for how time

should be defined in a system
 The most commonly used one is the CCSDS Unsegmented Code

(CUC) defined in the 301.0-B-3 recommendation
 It supports resolutions that are higher than the minimum jitter than

can be guaranteed by Time-code distribution in SpaceWire
networks

 This was seen as the most suitable time-code format for use with
SpaceWire time synchronization

Synchronization of slave ET

The 6-bit time-count in the Time Codes are
mapped to 6-bits in the CUC ET.

Time Codes are sent by the master with the frequency
determined by the mapping to the CUC.

The Time Code is expected to be received
synchronously with the slave ET counter i.e. at the time
when the ET transitions to the expected value.

A window of tolerance around this point is allowed.

Synchronization of slave ET (2)

 Time Codes keeps the bits from the msb to which
it is mapped to and below synchronized

Bits with higher significance are kept in sync by periodically
sending packets

The time-code master has to be the same as the master
sending the packets (they are completely synchronous).

 Time distribution data protocol

 Needs to carry the complete CUC while the
Time Codes only carry the 6-bits they are
mapped to.

Several different suggestions:

1. CCSDS Unsegmented code transfer protocol (CUCTP)
presented by Aeroflex Gaisler at 15th WG
meeting.

2. Use the RMAP protocol with the CUC information being
transferred by writing a certain (standardized?) address.

3. Use the same protocol as in RMAP but with a different
PID defining a separate address space.

Time distribution data protocols
pros and cons

 CUCTP:
Simple, requires small hardware

 resources, supports packet distribution

Cannot use existing hardware

RMAP:
Can use existing hardware (CUC mapped to
existing address space), supports replies (but are
they needed?)

Does not support packet distribution, might not be
possible to map CUC at same address, more
expensive in hardware if RMAP not already
present.

RMAP new PID:
Can use existing hardware with small modification,
supports replies, supports packet distribution, no
potential address clashes

more expensive in hardware if RMAP is not already
present in target

Accuracy

Limited by three different causes: latency,
jitter and drift.

The highest proposed Time Code frequency (8 kHz) has
a period of 122.1 us. At 200 Mbit/s the jitter at each link
is 70 ns and the latency for each link transfer is 70 ns.

In most networks this should give enough accuracy for
even the shortest Time Code period.

If the whole network or one or more links run at 2 Mbit/s
the jitter and latency are both 7 us. This is no longer
negligible. Methods to measure average jitter and
latency would have to be used.

With latency and jitter estimated averaging can be used
to determine an offset between master and slave ETs
which should be caused by drift.

Kill period

The kill period introduced in the SpW-D
requirements and trade-offs document suggests
that this period is a fraction of a Time Code period.

This would require that bits in the CUC less significant
than than the Time Code mapping should be
synchronized. This might not be the case and packets
might be erroneously killed (or not killed).

Kill period(2)

The kill action itself appears to be a non-trivial
task to accomplish especially in routers.

A router for example needs to detect that an
input/output port pair have exceeded their limit, stop the
transfer and spill both the receiver and transmitter.

Spilling receiver and transmitter could be a difficult task
to perform and to have an upper time limit.

Also should it be notified to an initiator that a packet has
been killed at the target? How should this be done.

Implications for RMAP

The current SpW-D proposal also implicitly
imposes timing restrictions on the RMAP layer.

As to our understanding this limits RMAP to certain
lengths for a specific configuration (e.g. 10 MHz Link, 1
kHz TC). To avoid restrictions on RMAP this requires
segmentation.

The current proposal seems to locate this segmentation
higher than RMAP in the protocol stack resulting several
layers being affected.

How will an RMAP target in hardware for example handle
a long write? There would have to be a SPW-D layer
tightly integrated into the core which detects timeouts
and spills the packet.

This results (again) in a non-trivial layering.

Conclusions

 It is better to use either a specific protocol e.g.
CUCTP or RMAP with a new protocol ID for
distributing time.

 Methods for determining network timing
parameters such as latency and jitter might be
needed especially with low or mixed link speeds.

 Using bits with lower significance than the Time
Code mapping can lead to erroneous packet
dropping due to lack of synchronization.

 Kill function and RMAP over SPW-D can be tricky to
implement especially in existing hardware

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

