

Low Mass SpaceWire Cable ITT AO/1-6214/09/NL/LvH

J.ILSTAD 16th SpW WG meeting 22/03/2011

jorgen.ilstad æt esa.int

- 1. Activity Scope
- 2. Characterisation of an ECSS-E-ST-50-12C SpW Cable
- 3. Cable Shielding Arrangement
- 4. Inputs for revised standard
- 5. Project status

Activity Scope

- Define and measure electrical parameters of the ECSS-E-ST50-12C cable as a reference for a new cable design
- 2. Identify the appropriate shielding for the cable
- 3. Connector/Cable bonding
- 4. Identify suited materials to obtain lower mass of the SpaceWire cable
- 5. Perform electrical performance validation and mechanical endurance tests
- 6. Provide a draft proposal for updating the ECSS-E-ST-50-12C cable specification

Characterisation of an ECSS-E-ST-50-12C Cable - Specification

- Axon SpaceWire Reference Sample (Product P532242)
 - a. Qualified according to ESCC3902.003.01.
 - b. Axon is QPL ESA test report N° 291

Performances	Туре	Мах	Nominal
Metrics	External diameter	7.5mm	6.9mm
	Mass	<85g/m	
	Electrical resistance	<239 Ω/Km	207 Ω/Km
Electrical	Insulation	$>$ 5 G Ω under 500Vdc	>5 G Ω under 500Vdc
	Capacitance	<50 pF/m	45pF/m
	Impedance	100Ω+/-6	100 Ω
	Insertion losses		<1dB/m @ 400Mhz
	Propagation factor	4.3ns/m	4.25ns/m
	EMI	>45dB	>60dB

Characterisation of an ECSS-E-ST-50-12C Cable

Test procedure

Define the test procedure to extract:

- Scattering parameters
- RLCG parameters
- Time Domain Reflectometry measurements

Ζ 100

0

Transfer impedance

LMSPW | J.ILSTAD | 16th SpW WG meeting | 22/03/2011 | TEC | Slide 5

Inductive

Discontinuity

 Z_2

Capacitive

Discontinuity

 $\cap \rightarrow b^2$

Zo

The most pertinent parameters to express are the:

- **S21** Transmission coefficient (insertion loss)
- **S22** Reflection coefficient (return loss)
- **NEXT** Near End Cross Talk
- FEXT Far End Cross Talk

Primary and **Secondary** Parameters (RLCG)

Characteristic Impedance - Zc

Skew - both intra-pair and pair to pair skew

Shield effectiveness - Zt

Eye Pattern measurements is good way to verify many of the individual parameters

Characterisation of an ECSS-E-ST-50-12C cable - S parameters

Average S21 and S22 values measured on a ECSS-E-ST-50-12C compliant cable.

Length / type of cable	Average s21@1GHz (dB)	Average S21@2GHz (dB)	Average Max S22
5.18m / SpW cable pair	-6.99	-12.43	- 8.5
Length / type of cable	Average	Average S21@2GHz (dB/m)	Average Max S22
		521@20112 (ub/111)	

Characterisation of an ECSS-E-ST-50-12C cable - NEXT and FEXT parameters

NEXT in SpW Cable (dB)	@GHz	@2GHz
Pair1 on Pair2	-50.8@1.16GHz	-62.2
Pair1 on Pair3	-37.2@1.16GHz	-54.2
Pair1 on Pair4	-43.7@0.905GHz	-51.8

Fext on cable (dB)	@Ghz	@2Ghz	
Pair1 on Pair2	-52.3@0.721Ghz	-70	
Pair1 on Pair3	-39.5@1.15Ghz	-55.9	
Pair1 on Pair4	-42.6@1.27Mhz	-57.9	

LMSPW | J.ILSTAD | 16th SpW WG meeting | 22/03/2011 | TEC | Slide 8

Impedance seen at one end of the transmission line when the other end is successively in Short circuit and Open circuit.

@1Mhz ß R С G А Zc ΦZc ΦZc (pF/m)(S/m) (Ω) (mRad/m) $(^{\circ}/m)$ (Ω/m) (nH/m)(mdB/m)(mRad/m) Blue 0.854 566 29.8 (1)26.8 27.3 140 -112-6.44White 0.869 29.6 -113 -6.49571 (1)27.0 37.3 141 0.823 565 35.8 (1)28.3 29.9 127 -109 -6.23 Red 566 29.8 (1)26.4 27.3-111 -6.35 Grev 0.842 140

@20Mhz

	R	L	С	G	А	ß	Zc	ΦZc	ΦZc
	(Ω/m)	(nH/m)	(pF/m)	(S/m)	(mdB/m)	(mRad/m)	(Ω)	(mRad/m)	(°/m)
Blue	2.95	474	35.5	(1)	107	488	116	-27.2	-1.56
White	3.14	473	33.5	(1)	11	473	119	-29.0	-1.66
Red	3.30	475	36.2	(1)	120	493	115	-30.4	-1.74
Grey	3.19	472	35.3	(1)	115	485	116	-29.5	-1.69

Characterisation of an ECSS-E-ST-50-12C cable - Zc and Skew

Characteristic Impedance of one pair from a Axon P532242 SpW cable shown using TDR measurement

Skew measured for pairs of a Axon P532242 SpW Cable

Pair N°	Skew (in ps) for cable under test (L=5.18m)	Skew (in ps/m)
1	190	18.3
2	90	8.69
3	480	46.3
4	290	28

LMSPW | J.ILSTAD | 16th SpW WG meeting | 22/03/2011 | TEC | Slide 11

Characterisation of an ECSS-E-ST-50-12C cable - Eye pattern

Test performed using a ParBERT81250 with PRBS 2³¹-1 V_{pp} = 2V

	Q Factor	Eye Height	Eye Width	RMS Jitter	PP Jitter
		(V)	(ns)	(ps)	(ps)
100Mb/s	15	1.42	9.87	18.2	74.4
200Mb/s	13.8	1.32	4.91	13.9	74.4
400Mb/s	9.99	1.24	2.42	13.0	64
800Mb/s	6.96	0.839	1.16	15.2	76.8

LMSPW | J.ILSTAD | 16th SpW WG meeting | 22/03/2011 | TEC | Slide 12

Characterisation of an ECSS-E-ST-50-12C cable - Eye pattern

Eye pattern measurements on a 5m Axon P532242 SpW Cable

P532242 length 5m @ a bit rate of 400Mb/s

P532242 length 5m @ a bit rate of 800Mb/s

Characterisation of an ECSS-E-ST-50-12C cable - Transfer Impedance

Transfer impedance establishes shield performance

The lower the value of the transfer impedance, the more effective the shielding

LMSPW | J.ILSTAD | 16th SpW WG meeting | 22/03/2011 | TEC | Slide 14

ESA UNCLASSIFIED - For Official Use

Cable Shielding arrangement - Should it be changed?

Is the current recommended ECSS-E-ST-50-12C shielding appropriate?

Inner Shields are not really that effective for signals with fast rising/falling edges*

* S. Allen, "SpaceWire Physical Layer Issues", MAPLD 2006

LMSPW | J.ILSTAD | 16th SpW WG meeting | 22/03/2011 | TEC | Slide 15

European Space Agency

ESA UNCLASSIFIED – For Official Use

Cable Shielding arrangement - Suggested changes

The Cable Shield;

- Prevents excessive electromagnetic radiation and susceptibility
- Prevent cross-talk between signal pairs
- Provides return path for common mode current
- * Survey applicable appropriate space craft grounding schemes
- * Identified a set of changes which should be discussed within the SpW WG.

LMSPW | J.ILSTAD | 16th SpW WG meeting | 22/03/2011 | TEC | Slide 16

Cable Shielding arrangement - ECSS-E-ST-50-12C

The inner shields connected to one side only

Inner shields are isolated from one another. Inner shields around Sout and Dout pairs are connected together and to pin 3 of connector.

Cable Shielding arrangement - Using only one shield

Survey pros and cons for a single shield solution

Conductor 28 AWG (7 x 36 AWG) Insulating layer Twisted pair Inner shield around twisted pair (40AWG) Jacket

- + Simple 360 termination
- + permits 9p MDM through bulkheads
- + Reduces cable mass
- Increased cross-talk between signal pairs
- Possible shield degradation compared to using both inner and outer shields
- Less uniform Zc

- + avoids increased cross talk between pairs
- + permits 9p MDM through bulkheads
- + Reduces cable mass
- Difficult 360 termination
- Possible shield degradation compared to using both inner and outer shields

Cable Shielding arrangement - Grounding schemes

Multipoint Ground – for high frequency signals

Cable Shielding arrangement - Conclusions

- EMC requirement in most satellite projects will not necessarily require double shielding.
- Shielding individual signal pairs and 360° termination to connector back-shell at both ends.
- Shield continuity through bulkhead connections is possible.

Several different cable constructions will be tested in the LMSpW activity.

Inputs for revised standard - Preliminary results

- 1. Replace detailed cable specification (clause 5.2) with key electrical parameters including limits (from S-parameters, to skew and jitter).
 - a. Allows cable construction to be tailored to specific mission needs.
- 2. Introduce EYE mask constraints (skew, jitter, over and under-shoot limits) as part of the standard.
 - a. The eye pattern gives all necessary parameters for entire physical channel i.e. not only the cable.
- 3. Inner shields of each individual DS pair of the cable is recommended 360° terminated to connector back shell (chassis) (< $10m\Omega$ impedance connection). In this case the outer shield is no longer needed.
- 4. In the case of adoption of 3. the pin 3 of MDM is no longer used.

Project status

Initial phase completed:

- Requirements definition related to a Low Mass SpaceWire Cable
- Characterise current ECSS-E-ST-50-12C SpW cable
- Review shielding arrangement
- Define 4 candidate cable designs ranging from full ECSS-E-ST-50-12C compliance to completely new design.

Design and Test phase:

- Design review closure is foreseen in April 2011
- Manufacturing of candidate LMSpW Cable
- Validation tests to be completed by July 2011
- Standardisation proposal to be completed by June 2011

Activity closure: Planned Q3 -2011

Thank You

LMSPW | J.ILSTAD | 16th SpW WG meeting | 22/03/2011 | TEC | Slide 23

Back-up slides

LMSPW | J.ILSTAD | 16th SpW WG meeting | 22/03/2011 | TEC | Slide 24

Materials - Fillers and outer jacket

Shield material and filler materials:

Recommendations for reduce shield mass:

Silver plated aluminium gives a 30% reduction compared to copper. Braided shield

Recommendations for reduced core insulation material: Expanded PTFE (CELLOFLON®) or alternatively ALVEOAR PTFE

Establish the proper method of bonding shields to connector

For connector under MIL or ESCC specification there is no real contact between the male and female shells.