SpaceWire-D

Steve Parkes, Albert Ferrer
University of Dundee

Stuart Mills, Chris McClements, Alex Mason,
Paul McKechnie, Pete Scott, Bruce Yu,
STAR-Dundee Ltd
New SpaceWire Protocols

- **SpaceWire Protocol ID**
 - ECSS-E-ST-50-51C
 - Identifies packets as belonging to a particular protocol

- **Remote Memory Access Protocol (RMAP)**
 - ECSS-E-ST-50-52C
 - Read from and write to memory in a remote node over a SpaceWire network
 - Ideal for configuration, control, housekeeping and data collection
 - Already being used on several missions

- **CCSDS Packet Transfer Protocol**
 - ECSS-E-ST-50-53C
 - Transfers CCSDS Space Packets over SpaceWire
Deterministic SpaceWire (SpW-D)

- SpaceWire for control applications
- Determinism is essential
 - Determinism means
 - Predictable
 - Delivery within time constraints
 - Constrained Architecture
 - Time-slicing

- Single SpaceWire link is deterministic
Determinism with Constrained Architecture

Controlling Node

Data-Handling Processor

SpaceWire Router

Inst. 1
Inst. 2
Inst. 3
Inst. 4
Inst. 5
Mass Memory

Read Command
Read Reply
Read Command
Read Reply
Problem with Multiple Masters

Data-Handling Processor

Read Command

SpaceWire Router

Inst. 1
Inst. 2
Inst. 3

SpaceWire Router

Inst. 4
Inst. 5

Mass Memory
Determinism with Time-Slots

- Time-codes used to define time-slots
- Time-slot has same number as time-code that starts the time-slot
- 64 time-slots
Determinism with Time-Slots

Each initiator has a schedule table

Data-Handling Processor

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>...</td>
</tr>
</tbody>
</table>

SpaceWire Router

Inst. 1

Inst. 2

Inst. 3

Mass Memory

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>...</td>
</tr>
</tbody>
</table>

Specifies in which time-slots an initiator is allowed to initiate an RMAP command
Time-Slot 2

Data-Handling Processor

SpaceWire Router

Inst. 1 Inst. 2 Inst. 3

Mass Memory

0 1 2 3 4 ...
Y N N Y N ...

0 1 2 3 4 ...
N Y Y N N ...

Read Command Read Reply
Time-Slot 3

Data-Handling Processor

SpaceWire Router

Inst. 1 Inst. 2 Inst. 3

Mass Memory

Read Reply

0 1 2 3 4 ...
Y N N Y N ...

0 1 2 3 4 ...
N Y Y N N ...

11
SpW-D Performance
Initiator Constraints

- Max data in RMAP read or write is limited
- Must respond to time-code quickly
 - Time-code to send RMAP command $< 5 \mu s$ (a)
- Must handle reply in a timely fashion
Target Constraints

- No modifications to RMAP target
- Must respond to RMAP command quickly
 - End of header to authorisation: < 5 μs (d)
 - Read or Write at least as fast as SpaceWire link can handle data 20 Mbytes/s
 - Read or Write latency: < 5 μs (f)
 - Create reply: < 5 μs (g)
- Can simply state that
 - Target must respond to an RMAP command within
 - 15 μs + time to transfer the data (at full SpW link speed)
SpW-D Performance

Effect of Data Length on Time-Slot Interval and Average Data Rate

Assumes average packet size is \((4+L)/2\) bytes where \(L = \text{max length}\)

Time-Slot Interval (us)

Average Data Rate (Mbits/s)

Max Data Length

- Time-Slot Interval
- Average Data Rate
Concurrent Data Transfer

- **Data-Handling Processor**
- **Spacewire Router**
- **Inst. 1**, **Inst. 2**, **Inst. 3**
- **Mass Memory**

Write Command
- Write Reply

Read Command
- Read Reply

Doubles the effective network bandwidth

Time and Space Partitioning of network
- Time: using time-slots
- Space: using different links
Multi-Slot Data Transfer

- For large data transfers
- Allow RMAP transaction to run over many slots

<table>
<thead>
<tr>
<th>Time Slot</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processor</td>
<td>45</td>
<td>89</td>
<td>87</td>
<td>48</td>
<td>45</td>
<td>96</td>
<td>87</td>
</tr>
<tr>
<td>Mass Memory</td>
<td>89</td>
<td>63</td>
<td></td>
<td>48</td>
<td>87</td>
<td>96</td>
<td></td>
</tr>
</tbody>
</table>
Multi-Slot Data Transfer: Time-Slot 1

Data-Handling Processor

Inst. 1
Inst. 2
Inst. 3

Mass Memory

Write Reply

Read Reply

SpaceWire Router

0 1 2 3 4 ...
Y Y Y Y N ...

0 1 2 3 4 ...
M M M N N ...

0 1 2 3 4 ...
M M M M N N ...

Write Command
Multi-Slot Data Transfer: Time-Slot 2

Data-Handling Processor

Write Reply

Spacewire Router

Read Reply

Inst. 1

Inst. 2

Inst. 3

Mass Memory

0 1 2 3 4 ...

Y Y Y Y N ...

0 1 2 3 4 ...

M M M N N ...

20
SpaceWire-D

- Built on SpaceWire and RMAP standards
- Uses time-codes to produce time-slots
- Schedules communication in time-slots
- Uses RMAP transactions
- Can support FDIR
- Simple constraints:
 - RMAP target
 - Speed of response to RMAP command
 - RMAP initiator
 - Speed of response to time-code
 - Limit to size of RMAP data field
- Very simple to implement
Discussion

- *It is easy to make things complicated and difficult to keep them simple 😊*
- *The simpler something is the easier it is to check that it works properly 😊😊*
Discussion

- Key Principles
 - Simplicity
 - RMAP target unchanged
 - Provided it meets some (reasonable) performance criteria
 - FDIR more important than throughput
Discussion

- Is everyone happy with
 - Simple, concurrent and multi-slot scheduling?

- Multiple transactions in a single time-slot?

- Who specifies time-slot duration, data size, etc
 - The standard or the system engineer?

- Segmentation
 - Responsibility of application or standard?
 - Only modify the initiator?

- Retry and redundancy
 - Should this be included in the protocol stack?

- FDIR
 - How important is this?
SpW-D Protocol Stack

- User Application
- PTP
- SpaceWire-R (Retry/Redundancy)
- RMAP
- SpaceWire-D (Scheduling)
- SpaceWire
- PnP
Discussion

- Is everyone happy with
 - Simple, concurrent and multi-slot scheduling?
Discussion

- Multiple transactions in a single time-slot?
Discussion

- Who specifies time-slot duration, data size, etc
 - The standard or the system engineer?
Discussion

- **Segmentation**
 - Responsibility of application or standard?
 - Only modify the initiator?
Discussion

- Retry and redundancy
 - Should this be included in the protocol stack?
Discussion

- FDIR
 - How important is FDIR?
Things to be considered

- Amount of data in RMAP transaction?
 - Currently 512 bytes
Things to be considered

- Duration of time-slot?
 - Currently 50 usec
 - Request for epoch of 1/64 second
 - Makes a time-slot 15.6 ms
 - Not very timely but may be adequated
Things to be considered

- Allow various specific time-slot durations?
- Allow system engineer to determine time-slot duration?
Things to be considered

- Data rates on links
 - Normally should all be the same
 - Do we allow links of slower data rate to be supported
 - May be reducing the size of packet that can be transferred?
 - Or using multiple time-slots?
Things to be considered

- Key thing is what do we specify/constrain in the standard?
- We could leave it open and have devices specify key parameters e.g.
 - Speed of response of target device
 - Data rate supported
Things to be considered

- **Multiple transactions in one time-slot?**
 - Would add flexibility to SpW-D
 - But make FDIR much more difficult
 - Trade-off between flexibility/complexity vs FDIR
Things to be considered

- **Segmentation**
 - Do we include segmentation of large RMAP transactions in the SpW-D protocol?
 - i.e. SpW-D able to perform any required RMAP transaction.
Things to be considered

- Retry and Redundancy
 - Do we include this in the protocol stack?
 - Along with FDIR mechanisms?
Things to be considered