Sols Services

Prof. *Yuriy Sheynin* St. Petersburg State University of Aerospace Instrumentation

Institute of High-Performance Computer and Network Technologies Director, Doctor of Science

> 190 000 St. Petersburg 67, Bolshaya Morskaya str. Fax: +7 812 3157778 E-mail: <u>sheynin@online.ru</u>

1. PnP

Configuration space standardization for SpaceWire Nodes and Switches

2. CCSDS SOIS Services

- Low-latency real-time signals and interrupts in the Services at the Application Support Layer and at the SOIS Sub-Network Layer (a problem statement)
- 2. CCSDS SOIS Services Prototyping, Plans in SOIS Services Prototyping and Analysis.

Network Notification Data Structures

- Plug-and-Play network service requires a unified data structures in network components
 - to unify network components identification procedures
 - to get important in network management procedures details on network components type, status
- PnP friendly architectures tend to standardize basic data structures (PCI Configuration space structure an example)

Router Identification

- Router Details:
 - Device Class=<SpaceWire Router> |

<SpaceFibre-SpW Router> | ...

- Vendor ID
- Number of ports
- Router Parole = <Random Router identification code>
- Router Serial Number

Node Identification

- Node Details:
 - Device Class=<SpaceWire Node>
 - Device Subclass
 - Vendor ID
- Number of ports
- Node Serial Number

Data Structure in a Router

Router Configuration

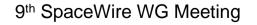
- Ports' Status (unitary coding)
- Faulty ports (unitary coding)
- Terminal ports (unitary coding)
- Group adaptive routing (unitary coding)

Routing Table

Routes to NNM

- Serial identification NNM = <Node Identification> <Path Address Length > < Path Address>
- Regional NNM = <Node Identification> <Path Address Length >< Path Address>

- Port State (for each port)
 - Port Status
 - Run
 - Error
 - Terminal
 - GAR Include
 - Up (Un_Id)
 - Down (Un_Id)
 - ...
 - Port Connection (for each port)
 - <Port Connection>= <Own Port> <Neighbor port>
 - <Neighbor Unit Details> =
 <DeviceClass=Node/Router><V
 endor ID>
 - <Neighbor Unit Parole> =
 Random identification code of
 Neighbor Unit
 - <Node Serial Number > Регистр GAR


Data Structure in a Node

- Port State (for each port)
 - Port Status
 - Run
 - Error
 - Terminal
 - GAR Include
 - Up (Un_Id)
 - Down (Un_Id)
 - ...

Routes to NNM

- a) <Serial identification NNM>= <Node
 Identification > < Path Address Length><
 Path Address>
- b) <Regional NNM List>=<List Length> {<Node Details> <Node Parole> <Node Serial Number > < Path Address Length >< Path Address>}*L

- Port Connection (for each port)
 - <Port Connection>= <Own
 Port> <Neighbor port>
 - <Neighbor Unit Details> =
 <DeviceClass=Node/Router><V
 endor ID>
 - <Neighbor Unit Parole> =
 Random identification code of
 Neighbor Unit
 - <Node Serial Number > Регистр GAR

Low-latency real-time signals in CCSDS SOIS Services

- The Low-latency real-time signals SpaceWire Distributed Interrupts possibilities are not presented at the Application Support Layer and at the SOIS Sub-Network Layer
- Interrupts as an example of low latency real-time signals are mentioned only in the Cmd & Data Acquisition Services
 - " The DDPS (Device Data Pooling Service) will periodically sample the devices at a determined sampling rate or cache state from devices that generate interrupts."

(page 30 in "Spacecraft onboard interface services// Draft informational report 850.0-G-0b ")

 To have an access to the low latency real-time signals distribution feature of the SpaceWire networks correspondent services and functions should be specified at the SOIS Application Support Layer and at the SOIS Sub-Network Layer

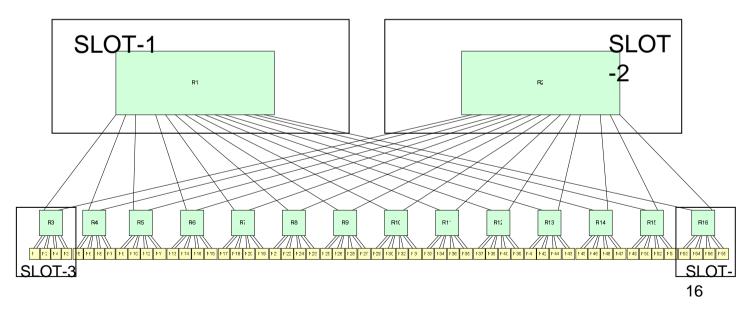
SOIS Services Analysis and Prototyping

Services of interest

- Interrupts Distribution Services
- Time Distribution Services
- QoS Packet Services

Analysis and prototyping by

- Analytical models
- Simulation models
- Prototyping with HW modules


CCSDS SOIS Services Prototyping

Configurable SpaceWire network models

Written in SystemC

Each type of network elements (node, link and routing switch) is implemented as an independent module. A network of required topology is be composed from this modules.

Visual Network Assembling in Visio

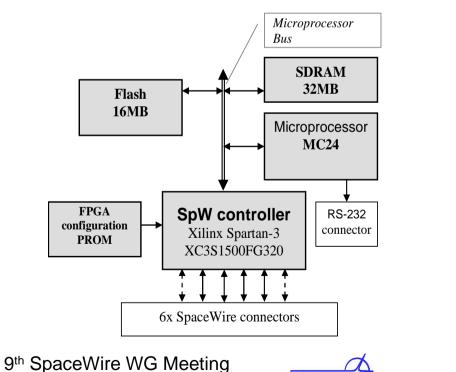
9th SpaceWire WG Meeting

SpaceWire network example (MS Visio)

SpaceWire Network – double star (D=1)

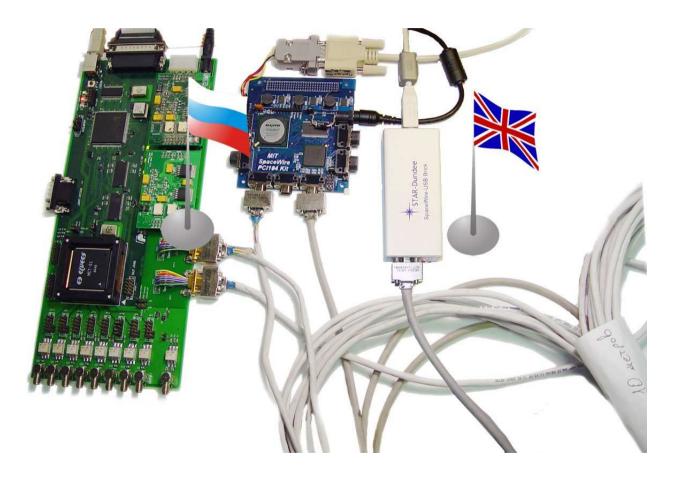
with ATCA (Advanced Telecommunications Computing Architecture)

	Time code time source time code p	e							Spee	ed	SI	_OT-2	
	Interrupt				Processing		Parameter Timeout		Port	Speed		\backslash	
	1		const	0		const	0	0	1	10	$ \downarrow $	<u> </u>	
	2		const	0		const	0	0	2	10	`		
	3		exp	0		const	0	0				\backslash	
	4		const	0		const	0	0					
	5		const	0		const const	0	0					\backslash
	7		ronst 💌	0		const	0	0					
	8		const	0		const	0	0					
	9		exp	0		const	0	0			<u> </u>		$ \longrightarrow $
R3 R4	10		uniform const			const	0	0				R15	R16
rt3 rt4	11		const	0		const	0	0				RIJ	
	12		const	0		const	0	0			-		
N1 N2 N4 N3 N5 N6 N8 N7 N9	13		const	0		const	0	0			N47	7 N49 N50 N52 N5	N53 N54 N56 N55
	14		const	0		const	0	0			║┠┸		
LOT-3	15	0	const	0	0	const	0	0					SLOT-1
	16	0	const	0	0	const	0	0 💌					
9 th SpaceWir_				SUH						Accept	Ī		11


Parameters settings for Node 4

PCI104 SpaceWire Kit

The one-board high performance DSP module:


- a ready-made building block
 - for SpaceWire-compatible EGSE systems
 - for on-board distributed & parallel space data systems prototypes with high-speed SpaceWire communication technologies.

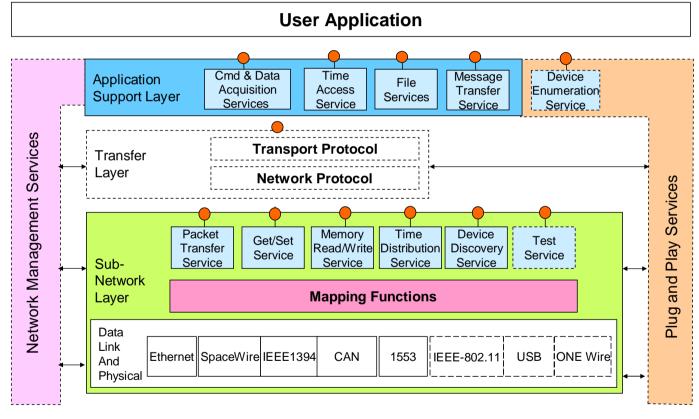
PCI104 form-factor

Sample Trial Interconnection of SpaceWire implementations

SOIS General Remarks

- 1. Services specification in SOIS
 - A wide range of qualitative requirements

- **Good** !


- But:

Lack of quantitative parameters (a set of parameters, not particular values)

- 2. General SOIS Architecture
 - Network/Subnetwork in the SOIS multi layered structure

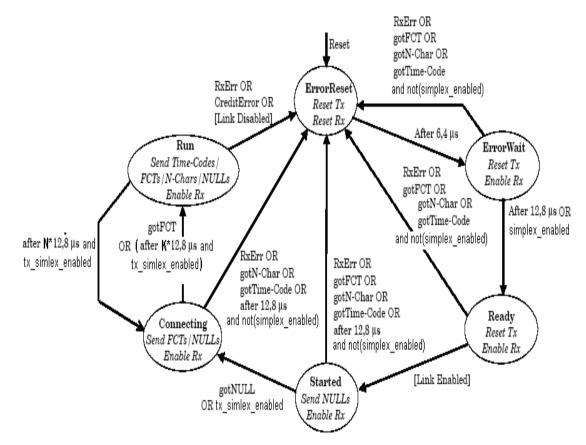
Network/Subnetwork in the SOIS multi layered structure

Denotes service access point

Simplex SpaceWire links operation mode

- Simplex mode of SpaceWire links was claimed to be useful at some previous SpaceWire WG meeting
- Some SpaceWire potential users and applications would like to have simplex links
- One of the main reasons to minimise cabling, number and weight of cable wires: 4 wires instead of 8. (Harness minimization)
- It is not hard to implement a Simplex mode of a SpaceWire link operation just switching of FCT-based flow control in a transmitter and a receiver
- The problem is in managing link disconnection:
 * the Receiver will be reset and wait for NULLs to restart the connection

* the Transmitter will never know that link disconnection happened and will continue to send data, N-char and EOP, not *NULLs*


 Some form of "re-synchronization" between Transmitter and Receiver operation is required

Simplex SpaceWire links operation mode (2)

- The standard state machine should be slightly changed to deal with the problem
- There some variants to do it
- To do it in a consistent manner for various SpW controllers implementation

 a subject for SpW WG standardization

Thank you !

