Generic Payload Data Handling System functions and modules - PADAPAR -

Ninth SpaceWire Working Group Meeting 26th and 27th of April 2007

Contacts EADS Astrium:
Olivier Notebaert, Christophe Honvault

General presentation

- Define a generic architecture for future payloads:
 - matching mid-term needs
 - optimizing the development process through standard building blocks definition
 - Taking into account the ESA harmonisation dossier on payload data processing systems.

Activities:

- Survey of Payload Data Processing state-of the art and technology trends
- Future needs estimation and trend analysis
- Specification and Architecture
- Demonstration platform definition
- Development, Integration and Validation

Functional architecture analysis

- Survey of recent and current payload architectures
 - GOCE, SMOS, PLEIADES, METOP, ROCSAT2/THEOS, AEOLUS, TerraSAR-X, Cryosat, SWARM, SPIRALE
 - Venus Express, Rosetta, LISA Pathfinder
 - Inmarsat, ANIK F1R
 - LOLA
- Projection of future needs
 - Proba-2, EarthCare, ExoMars Orbiter, BepiColombo, MSR Orbiter, Solar Orbiter, A3SYSDEF (Study for generic Avionics System Architecture in the frame of the AURORA programme for Mars Exploration)
- Definition of a list of standard building blocks and a reference architecture.

PADAPAR Building blocks

ACQUISITION

 Includes all analog functions which allow to acquire the analogue signal coming from the detector and convert it to digital.

FRONT PROCESSING

 Includes all processing functions used on the different payloads taken into account.

DATASTORAGE

 Includes all functions associated with the long term storage capacity of the payload.

DATA TRANSFER

Includes all functions dedicated to the data transfer between the different modules & equipment.

DATA TRANSMISSION TO GROUND

Includes all functions dedicated to the data transmission to the ground.

DATA HANDLING GENERAL SERVICES

Includes all additional functions necessary to get underway the payloads.

Functional architecture mapping

Demonstration plan

- SpaceWire Characterisation
 - Verification and initial performance characterisation
 - Influence of network topology
- Use case image processing
 - Definition of realistic traffic scenarios
- Use case mass memory access
 - Future development of Flash based Mass Memory
 File system (fast prototyping).
 - Support to fast prototyping
- Use case Payload Data Handling
 - Data management for payloads on-board applications (concurrent accesses)
 - Command/Control of payload applications
- Overall Integration
 - Execution of applications using different profiles.

TopNet Pilot Operation Implementation

Use of SpaceWire on Ethernet for early functional integration is foreseen

Conclusion

- PADAPAR provides technical assessment for the consolidation of the ESA harmonisation dossier on payload data processing systems.
- PADAPAR provides support for fast prototyping and evaluation of payload data processing modular systems with:

New mass memory devices (e.g. GAMMA)

New Payload controllers (e.g. Leon based using Maeva)

New Payload processors (e.g. MDPA, AGGA-3, ...)

New SpaceWire router (SPROUT)

To target next missions:

BepiColombo

Sentinel

SolO

Aurora

Benefits of the architecture

- Scalable architecture that easily support add of modules.
- Support a step by step development process starting with applications running on simulator, ported on FPGA and integrated using EM.
- Uncoupled development and functional integration of modules eased by use of a decentralized approach (TopNet).
- Representative modules (simulators, Leon boards) support fast prototyping with relevant performance measurements.
- Space qualified Hardware components under development.

