
 ECSS-E-50-11 Draft F
 4th December 2006

1

6
Remote memory access protocol

(normative)

6.1 General

6.1.1 Purpose
The remote memory access protocol (RMAP) has been designed to support a
wide range of SpaceWire applications. Its primary purpose however is to
configure a SpaceWire network, to control SpaceWire units and to gather data
and status information from those units. RMAP may operate alongside other
communications protocols running over SpaceWire.
RMAP may be used to configure SpaceWire routing switches, setting their
operating parameters and routing table information. It may also be used to
monitor the status of those routing switches. RMAP may be used to configure
and read the status of nodes on the SpaceWire network. For example, the
operating data rate of a node may be set to 100 Mbits/s and the interface may
be set to auto-start mode.
For simple SpaceWire units without an embedded processor, RMAP may be
used to set application configuration registers, to read status information and
to read or write data into memory in the unit.
For intelligent SpaceWire units RMAP can provide the basis for a wide range
of communications services. Configuration, status gathering, and data
transfer to and from memory or mailboxes can be supported.

6.1.2 RMAP Operations
RMAP is used to write to and read from memory, registers, FIFO memory,
mailboxes, etc, in a destination node on a SpaceWire network. Input/output
registers, control/status registers and FIFOs are assumed to be memory
mapped so are accessed as memory. Mailboxes are indirect memory areas
that are referenced using a memory address.
All read and write operations defined in the RMAP protocol are posted
operations i.e. the source does not wait for an acknowledgement or reply to be
received. This means that many reads and writes can be outstanding at any
time. It also means that there is no timeout mechanism implemented in
RMAP for missing acknowledgements or replies. If an acknowledgement or
reply timeout mechanism is required it must be implemented in the source
user application.

ECSS-E-50-11 Draft F
4th December 2006

2

6.1.2.1 Write commands
Write commands can be acknowledged or not acknowledged by the
destination node when they have been received correctly. If the write is to be
acknowledged and there is an error with the write request, the destination
will send an error code to the source that sent the command. The error can
only be sent to the source if the write command header was received intact, so
that the destination that detected the error knows where to send the error
message. If no acknowledgement is requested then the fact that an error
occurred may be stored in a status register in the destination node.
Write commands can perform the write operation after verifying that the
data has been transferred to the destination without error, or it can write the
data without verification. To perform verification on the data requires
buffering in the destination node to store the data while it is being verified,
before it is written. The amount of buffering is likely to be limited so verified
writes ought only be performed for relatively short sets of data, that will fit in
the available buffer at the destination. Longer writes can be performed but
without verification prior to writing. Verification in this case is done after the
data has been written. Verified writes should always be used when writing to
configuration or control registers.
The acknowledged/non-acknowledged and verified/non-verified options to the
write command result in four different write operations:
 Write non-acknowledged, non-verified – writes zero or more bytes

to memory in a destination node. The command is checked using a CRC
before the data is written, but the data itself is not checked before it is
written. No acknowledgement to indicate that the command has been
executed is sent to the source of the write command. This command is
typically used for writing large amounts of data to a destination where it
can be safely assumed that the write operation completed successfully.
For example the writing of camera data to a temporary working buffer.

 Write non-acknowledged, verified – writes zero or more bytes to
memory in a destination node. Both the command and data are checked
using CRCs before the data is written. This limits the amount of data
that can be transferred in a single write operation, but erroneous data
cannot be written to memory. No acknowledgement to indicate that the
command has been executed is sent to the source of the write command.
This command is typically used for writing command registers and
small amounts of data to a destination where it can be safely assumed
that the write operation completed successfully. For example writing
many commands to different configuration registers in a device and then
checking for an error using a status register

 Write acknowledged, non-verified – writes zero or more bytes to
memory in a destination node. The command is checked using a CRC
before the data is written, but the data itself is not checked before it is
written. An acknowledgement to indicate that the command has been
executed is sent to the source of the write command. This command is
typically used for writing large amounts of data to a destination where it
can be safely assumed that the write operation completed successfully,
but an acknowledgement is required. For example writing sensor data to
memory.

 ECSS-E-50-11 Draft F
 4th December 2006

3

 Write acknowledged, verified – writes zero or more bytes to memory
in a destination node. Both the command and data are checked using
CRCs before the data is written. This limits the amount of data that can
be transferred in a single write operation, but erroneous data cannot be
written to memory. An acknowledgement to indicate that the command
has been executed is sent to the source of the write command. This
command is typically used for writing small amounts of data to a
destination where it is important to have confirmation that the write
operation was executed successfully. For example writing to command
or configuration registers.

6.1.2.2 Read commands
The read command reads one or more bytes of data from a specified area of
memory in a destination node. The data read is returned in a reply packet.

6.1.2.3 Read-modify-write
The read-modify-write command reads a register (or memory) returning its
value and then writes a new value, specified in the command, to the register.
A mask can be included, in the command, so that only certain bits of the
register are written. This provides an atomic operation that can be used for
semaphores and other handshaking operations.

6.1.3 Nomenclature
In this document hexadecimal numbers are written with the prefix 0x, for
example 0x34 and 0xdf15. Binary numbers are written with the suffix b, for
example 01001100b and 01b.

6.1.4 Guide to clause 6
A set of definitions is given in sub-clause 6.2. The various write commands
are defined in sub-clause 6.3. The read command is described in sub-clause
6.4, and the read-modify-write command in sub-clause 6.5. The error codes
that are used in RMAP replies and acknowledgments are listed in sub-clause
6.6. The way in which partial implementations of RMAP may be implemented
is described in sub-clause 6.7. In sub-clause 6.8, several use cases for RMAP
are presented giving examples of how RMAP can be used to support several
different types of application. In sub-clause 6.9, a summary of the RMAP
command codes is given. Sub-clause 6.10 specifies the conformance
statements, sub-clauses that must be implemented and the ancillary
information that must be provided, in order for a supplier to claim
conformance to the SpaceWire RMAP standard. Example VHDL and C-code
for the 8-bit CRC used by RMAP is given in section 6-11. Finally, in section
6.12 the changes since the last release of this document are listed.

6.2 Definitions
The following definitions are presented in the order in which the respective
fields are found in the RMAP commands and replies.
Path Address is a SpaceWire path address which defines the route to a
destination node by specifying, for each router encountered on the way to the
destination, the output port that a packet is to be forwarded through. A path
address comprises one byte for each router on the path to the destination.
Once a path address byte has been used to specify an output port of a router
it is deleted to expose the next path address byte for the next router. All path

ECSS-E-50-11 Draft F
4th December 2006

4

address bytes will have been deleted by the time the packet reaches the
destination
Logical Address byte is the logical address of the source or destination. This
may be used to route the packet to the destination or, if path addressing is
being used, to simply confirm that the final destination is the correct one i.e.
that the logical address of the destination matches the logical address in the
packet. If the logical address of the destination is unknown then the default
logical address of 254 (0xFE) may be used (see sub-clause 5.2.1). The
destination may choose to accept or reject packets with a logical address of
254.
Destination Path Address is the path address to the destination node on
the SpaceWire network.
Destination Logical Address is the logical address of the destination node.
Source Path Address bytes provide a source path address for the reply to a
command. The source path address is not needed if logical addressing is being
used. The source path address is used by the destination node to send
acknowledgements or data back to the source that requested a write or read
operation using path addressing. The Source Path Address byte allows path
addressing and regional logical addressing to be used to specify the source
node. Leading zeros of the return address are ignored. If a packet is to be sent
to address zero then this is done by setting all the extra return address bytes
to zero. This will result in a single zero address byte being sent in front of the
source address. The following examples illustrate this:

Source Path Address Field Resulting Path Address

0x00 0x00 0x00 0x00 0x00

0x00 0x00 0x01 0x02 0x01 0x02

0x00 0x01 0x00 0x02 0x01 0x00 0x02

0x00 0x01 0x02 0x00 0x01 0x02 0x00

0x00 0x00 0x00 0x00
0x01 0x02 0x03 0x04

0x01 0x02 0x03 0x04

0x00 0x00 0x00 0x01
0x02 0x03 0x04 0x05

0x01 0x02 0x03 0x04 0x05

Source Logical Address byte is the logical address to which the destination
node for a command is to reply. The Source Address is normally set to the
logical address of the source node that is sending the command. The Source
Address byte may be set to 254 (0xFE) which is the default logical address, if
the command source node does not have a logical address.
Protocol Identifier byte identifies the particular protocol being used for
communication. For the Remote Memory Access protocol the protocol
identifier has the value 1 (0x01).
Packet Type, Command, Source Address Length byte determines the
type of the packet i.e. a command, a reply or an acknowledgement. This byte
also includes two bits that determine the number of extra 4-byte return
addresses. For example, if these bits are set to the value two then there will
be eight extra source address bytes. If they are set to zero then there are no
extra address bytes.

 ECSS-E-50-11 Draft F
 4th December 2006

5

Destination Key provides a one byte key which must be matched by the
user destination application in order for the RMAP command to be accepted.
Transaction Identifier bytes are used to identify command, response, and
acknowledge transactions that make up a particular read or write operation.
The source of the command gives the command a unique transaction identity.
This transaction identifier is returned in the reply to the command. This
allows the command source to send many commands without having to wait
for a reply to each command before sending the next command. When a reply
or acknowledge comes in it can be quickly associated with the command that
caused it by the transaction identifier.
Extended Address byte is used to extend the 32-bit memory address to 40-
bits allowing a 1 Terabyte address space to be accessed directly in each node.
For nodes that do not support a 40-bit address space this byte should be set to
zero. The Extended Address may be used to differentiate between various
address spaces in the destination. For example when set to 0x00 it may
reference a 4G location directly addressable memory space and when set to
0x01 it may reference an array of mailboxes, which provide indirect
addressing.
Memory Address bytes form the bottom 32-bits of the memory address to
which the data in a write command is to be written or from where data is to
be read for a read command. Input/output registers and control/status
registers are assumed to be memory mapped. When combined with the
Extended Write Address byte a 40-bit memory address is provided. The
address can be separated into different fields and interpreted in a variety of
different ways provided that the source and destination both agree on the
interpretation. For example, the 40-bit address may be used as a single
address space, it may be interpreted as a memory/register bank field followed
by an address, it may reference a mailbox or it may use one field to identify a
specific application, another to reference a bank of memory or mail box
related to that application and a third field to reference the memory location
within the memory bank. There are many possible ways in which the address
fields can be used. The important feature of the Extended Memory and
Memory Address fields is that together they define where in the destination
node data is to be written to or read from.
Data Length bytes form the 24-bit length of the data that is to be written or
read. The length is the length in bytes with the most-significant byte of the
length sent first.
Header CRC byte is an 8-bit Cyclic Redundancy Check (CRC) used to
confirm that the header is correct before executing the command. Each byte
in the header starting with the destination logical address and ending with
the byte before the header CRC itself is used in the CRC. See CRC definition
below.
Data bytes are the data that is to be written in a write command or the data
that is read in a read response.
Data CRC is an 8-bit Cyclic Redundancy Check (CRC) used to confirm that
the data is correct before being written in a verified write command or was
correctly transferred in a non-verified write command or read reply. The data
CRC starts with the byte after the header CRC and covers all the data bytes.
See CRC definition below.
EOP character is the End Of Packet marker of the SpaceWire packet.
CRC The CRC-8 code is used for both the Header CRC and the Data CRC.
CRC-8 has the following polynomial: X8 + X2 + X1 + 1, with a starting value of
0x00. The Galois version of the CRC is used. VHDL and c-code

ECSS-E-50-11 Draft F
4th December 2006

6

implementations of this CRC algorithm are included in sub-clause 6.11,
Annex A. If the length of the data is zero, then the Data CRC will be 0x00, i.e.
the starting value. The CRC is calculated on the byte stream not the serial bit
stream, since the RMAP protocol operates above the SpaceWire packet level
(see ECSS-E50-12A). The equivalent serial representation takes the least
significant bit of each byte first and does not include data/control or parity
bits, nulls, FCT or other non-data characters. See section 6-11 (Annex A) for
some examples of how the CRC may be implemented.
The correct operation of the CRC should result in the following CRC codes
being generated for the following test patterns (all values below are in hex):
Test Pattern 1:
Input Data:
0x01, 0x02, 0x03, 0x04,
0x05, 0x06, 0x07, 0x08,
Resulting CRC value is: 0xB0

Test Pattern 2:
Input Data:
0x53, 0x70, 0x61, 0x63,
0x65, 0x57, 0x69, 0x72,
0x65, 0x20, 0x69, 0x73,
0x20, 0x62, 0x65, 0x61,
0x75, 0x74, 0x69, 0x66,
0x75, 0x6C, 0x21, 0x21,
Resulting CRC value is: 0x84

Test Pattern 3:
Input Data:
0x10, 0x56, 0xC3, 0x95,
0xA5, 0x75, 0x38, 0x63,
0x2F, 0x86, 0x7B, 0x01,
0x32, 0xDE, 0x35, 0x7A,
Resulting CRC value is: 0x18

6.3 Write Command
The various types of write command are describe here.

6.3.1 Write command format (logical addressing)
The write command provides a means for one node, the source node, to write
one or more bytes of data into memory of another node, the destination node
on a SpaceWire network. The format of the command when using logical
addressing only is shown in Figure 6-1.

 ECSS-E-50-11 Draft F
 4th December 2006

7

Destination Logical Address Protocol Identifier Packet Type, Command,
Source Path Addr Len Destination Key

Source Logical Address Transaction Identifier (MS) Transaction Identifier (LS) Extended Write Address

Write Address (MS) Write Address Write Address Write Address (LS)

Data Length (MS) Data Length Data Length (LS) Header CRC

Data Data Data Data

Data Data Data Data

Data Data CRC EOP

First byte transmitted

Last byte transmitted

Write = 1 Verify data(1)
Don’t Verify (0)Command = 1 Increment/

No inc. address
Ack (1)/

No ack (0)Reserved = 0 Source Path
Address Len = 0

Source Path
Address Len = 0

Bits in Packet Type / Command / Source Path Address Length Byte

MSB LSB

Packet Type Command Source Path Address Length

Figure 6-1 Write Command Format (Logical Addressing)

The Destination Logical Address is set to the logical address of the
destination node.
The Protocol Identifier byte is set to the value 1 (0x01) which is the Protocol
Identifier for the Remote Memory Access protocol.
The Packet Type field comprises a reserved bit and a command/reply bit
which is set (1) for a command and clear (0) for a response. The packet type
field for the write command is 01b, i.e. the command/reply bit is set, to
indicate that the packet is a command packet, rather than a reply packet. The
reserved bit is clear (0).
The Command field holds the direct write command.
The Write/Read bit is set (1) for a write command.
The Verify Data Before Write bit is set (1) if the data is to be verified before it
is written to memory. The command header is always checked using a CRC
(Header CRC see below) before the command is executed. If the Verify Data
Before Write bit is set then the entire command must be buffered and verified
using the Header CRC and the Data CRC before the command is executed.
Since the entire command and data has to be buffered this places a limit on
the amount of data that can be included in the write command. All RMAP
compliant interfaces have to support the buffering and validation of write
commands with at least four bytes of data. The buffering and validation of
write commands with more than four bytes of data is dependent on the
particular interface. If there is more data than will fit in the available buffer
space then the command will not be executed and a reply with th e “V erify
B u ffer O verru n ” error code sh all be sen t back to th e sou rce, assu m in g th at an
acknowledgement has been requested in the command. If the Verify Data
Before Write bit is not set (0) then the data is not verified before it is written.
This enables much larger amounts of data than can be buffered to be written
in a single command. The command header is verified with the Header CRC
so that it is confirmed that the correct memory address and data length is
being used. The data is then streamed into the memory space as it arrives

ECSS-E-50-11 Draft F
4th December 2006

8

without first being checked. Once all the data has been written to the
specified memory area the data is verified using the Data CRC. This is
acceptable because even if the wrong data has been written to memory, at
least it has not been written in the wrong place. The error will be reported to
the source node if the Ack/No_Ack bit has been set (1) to request an
acknowledgement to the write command. If the source is able to resend the
data then this can be done. When writing to control and configuration
registers it is essential that the Verify Data Before Write bit is set (1).
The Ack/No_Ack bit is set (1) if an acknowledgement to the write command is
required and cleared (0) if no acknowledgement is to be sent. If no
acknowledgement is requested then the source will not be informed when an
error occurs in the write command.
T h e com m an d option “In crem en t / N o In crem en t Address” is used for multiple
data byte transfers. If set (1) it causes the write memory address in the
destination to increment on every byte (or word as determined by the
destination unit) written so that data bytes are written to consecutive
memory locations. If not set (0) the write memory address is not incremented
so successive data bytes (or words as determined by the destination unit) are
written to the same memory location. Note that the width of the memory
word is determined by the destination unit and can be any multiple of 8-bits.
For example, if the width of the destination unit memory word is 32-bits then
four data bytes from the data field of the command are written into one
memory location in the destination unit. Normally the memory address would
be aligned on a 32-bit boundary when doing 32-bit writes.
The Source Path Address Length field is set to zero when logical addressing is
being used.
The Destination Key byte contains an eight-bit code holding the user
destination key. This value is passed to the destination user application for
authorisation. If it is not the value expected by the destination user
application then the command will be rejected and not executed. An invalid
destination key error will be returned to the source of the write command if
an acknowledgement has been requested. Note that the Destination Key
should only be used for command authorisation. It should not be used for
other purposes (e.g. distinguishing between different applications in the
destination node, see Extended Write Address).
The Source Logical Address byte contains the logical address of the source of
the write command packet. If the source node does not have a logical address
because only path addressing is being used then the Source Logical Address
byte must be set to 254 (0xFE) (see sub-clause 5.2.1) which is the default
logical address.
The Transaction Identifier bytes are set to the value provided by the user
application in the source node. Typically transaction identifiers are an
incrementing integer sequence, with each successive RMAP transaction being
given the next number in the sequence. The intention of the transaction
identifier is to uniquely identify a transaction. The reply to a write command
contains the same transaction identifier as in the write command. Thus it can
be readily matched, by the user application in the source node, to the specific
command that caused the reply.
The Extended Write Address byte holds the most-significant 8-bits of the
memory address to be written to. This extends the 32-bit memory address to
40-bits allowing access to 1 Terabyte of memory space in each node. The
Extended Write Address may be used to identify different banks of memory or
registers to be written to, to specify a target application for the data, or to
reference a specific mail box.

 ECSS-E-50-11 Draft F
 4th December 2006

9

The four Write Address bytes hold the bottom 32-bits of the memory address
to which the data in a write command is to be written. The first byte sent in
the command is the most significant byte of the address.
The three Data Length bytes contain the length of the data that is to be
written. This gives a maximum data length of 16 Mbytes -1 in a single write
command. If a single byte is being written this field is set to one. If set to zero
then no bytes will be written to memory which may be used as a test
transaction. The first byte sent is the most significant byte of the data length.
The Header CRC byte is an 8-bit CRC used to confirm that the header is
correct before executing the command.
The Data bytes contain the data that is to be written into the memory of the
destination node. When writing to memory organised in words (e.g. 32-bit
words) then the first byte sent is the most-significant byte of the word.
The Data CRC contains an 8-bit CRC error check code used to confirm that
the data was correctly transferred. In a write command data is written to
destination memory provided that the header CRC shows no error in the
header. This helps to prevent inadvertent writing to incorrect areas of
memory when there is an error in the header. If there is an error indicated by
the data CRC then the wrong data might have been written to memory, but it
will not have been written to the wrong place. The user application at
destination will be informed that there was an error in the data transferred.
The source will be informed of the data error if the acknowledge bit in the
command has been set. Corrective action can then be taken where
appropriate. Note that the data CRC is always present. When there is no data
(data length is zero) the data CRC is set to 0x00.
EOP character is the End Of Packet marker of the SpaceWire packet.

6.3.2 Write reply format (logical addressing)
The reply to a write command is sent by the destination back to source of the
write command. The reply is used to indicate the success or failure of the
write command. The format of the write reply when using logical addressing
is shown in Figure 6-2.

Source Logical Address Protocol Identifier Packet Type, Command,
Source Path Addr Len Status

Destination Logical Address Transaction Identifier (MS) Transaction Identifier (LS) Header CRC

EOP

First byte transmitted

Last byte transmitted

Write = 1 Verify data (1)
Don’t Verify (0)Response = 0 Increment/

No inc. addressAck = 1Reserved = 0

Bits in Packet Type / Command / Source Path Address Length Byte

MSB

Packet Type Command

Source Path
Address Len = 0

Source Path
Address Len =0

LSB

Source Path Address Length

Figure 6-2 Write Reply Format (Logical Addressing)

The Source Logical Address byte contains the logical address of the source of
the write command packet, as specified in the write command Source Address
field.

ECSS-E-50-11 Draft F
4th December 2006

10

The Protocol Identifier byte is set to the value 1 (0x01) which is the Protocol
Identifier for the Remote Memory Access protocol.
The Packet Type field is 00b to indicate that this is a reply packet.
The Command and Source Path Address Length field are set to the same
values as in the command byte of the write command.
The Status byte provides the status of the write command. This is set to zero
if the command executed successfully and to a non zero error code if there
was an error. See error codes sub-clause 6.6.
Destination Logical Address the logical address of the unit sending the reply.
The Transaction Identifier bytes are set to the same value as provided in the
write command. This is so that the source of the write command can associate
the reply with the original write command.
The Header CRC byte is an 8-bit CRC used to confirm that the reply packet
has been received without error.
EOP character is the End Of Packet marker of the SpaceWire packet.

6.3.3 Write command format (path addressing)
The format of the command when using path addressing is shown in Figure
6-3.

Destination Path Address

Destination Logical Address Protocol Identifier Packet Type, Command,
Source Path Addr Len Destination Key

Source Path Address Source Path Address Source Path Address Source Path Address

Source Logical Address Transaction Identifier (MS) Transaction Identifier (LS) Extended Write Address

Write Address (MS) Write Address Write Address Write Address (LS)

Data Length (MS) Data Length Data Length (LS) Header CRC

Data Data Data Data

Destination Path Address Destination Path Address

Data Data Data Data

Data Data CRC EOP

First byte transmitted

Last byte transmitted

Write = 1 Verify data(1)
Don’t Verify (0)Command = 1 Increment/

No inc. address
Ack (1)/

No ack (0)Reserved = 0 Source Path
Address Length

Source Path
Address Length

Bits in Packet Type / Command / Source Path Address Length Byte

MSB LSB

Packet Type Command Source Path Address Length

Figure 6-3 Write Command Format (Path Addressing)

The fields within the write command when using path addressing are the
same as when using logical addressing with three exceptions. There is a
Destination Path Address added, the command byte will contain the Source
Path Address Length and the Source Path Address will be present.
The Destination Path Address is the address on the SpaceWire network of the
node that is to have data written into its memory. The destination address is
made up of two parts: the Destination Path Address bytes which are optional
(shaded in Figure 6-3) and the Logical Address. When path addressing is

 ECSS-E-50-11 Draft F
 4th December 2006

11

being used the Destination Path Address bytes contain the path to the
destination node. The Destination Logical Address byte is then set to the
logical address of the destination node or to the default value 254 (0xFE).
When path addressing (or regional logical addressing) is being used the
Source Path Address Length field has to be set to the smallest number of 32-
bit words that can be used to contain the path address from the destination
node that is being written to back to the source of the command packet. For
example, if three path address bytes are required then the Source Address
Path Length field is set to one.
The Source Path Address bytes contain any required path address (or
regional logical address) bytes needed to route the reply packet from the
destination node back to the source node.
The Source Logical Address byte contains the logical address of the source of
the write command packet. If the source node does not have a logical address
because only path addressing is being used then the Source Logical Address
byte must be set to 254 (0xFE) (see sub-clause 5.2.1) which is the default
logical address.

6.3.4 Write reply format (path addressing)
The format of the write reply when using path addressing is shown in Figure
6-4.

Source Path Address

Source Logical Address Protocol Identifier Packet Type, Command,
Source Path Addr Len Status

Destination Logical Address Transaction Identifier (MS) Transaction Identifier (LS) Header CRC

Source Path Address Source Path Address

EOP

First byte transmitted

Last byte transmitted

Write = 1 Verify data (1)
Don’t Verify (0)Response = 0 Increment/

No inc. addressAck = 1Reserved = 0

Bits in Packet Type / Command / Source Path Address Length Byte

MSB

Packet Type Command

Source Path
Address Length

Source Path
Address Length

LSB

Source Path Address Length

Figure 6-4 Write Reply Format (Path Addressing)

The Source Path Address bytes contain any required path address bytes
needed to route the reply packet from the destination node back to the source
node. The value of the Source Path Address bytes are as specified in the
Source Path Address field of the write command. Any Source Path Address
bytes are stripped off by the time the reply reaches the source of the write
command.
The other fields are the same as when using logical addressing.

6.3.5 Write action
The operation of the write command is illustrated in the sequence diagram of
Figure 6-5.

ECSS-E-50-11 Draft F
4th December 2006

12

Write Request

Write Data
Request

Write
Command

Write
Reply

Write Complete
Confirmation

Source Destination

Write Data
Authorisation

Write Data

Write Data
Indication

Figure 6-5 Write Command/Acknowledge Sequence

The write command sequence begins when an application requests to perform
a write operation (Write Request). In reply to this the source node builds the
write command and sends it across the SpaceWire network to the destination
node (Write Command). When the Write Command arrives at the destination,
the header is first checked for errors and if there are no errors the user
application at the destination node is asked if it will accept the write
operation (Write Data Request). Assuming that authorisation is given by the
destination user application (Write Data Authorisation) the data contained in
the write command is written into the specified memory location of the
destination node (Write Data). If the Verify Data Before Write bit is set in the
command field of the header then the data is buffered and checked using the
data CRC before it is written to memory.
Once data has been written to memory the user application running on the
destination node is informed that a write operation has taken place (Write
Data Indication). If an acknowledgement has been requested by setting the
Ack/No_Ack bit in the command field then the destination node will wait
until the data has been written to memory in the destination node. It will
then send a write reply packet back to the source of the write command
(Write Reply). When the write reply is received, the source node indicates
successful completion of the write request (Write Complete Confirmation).
If no acknowledgement is requested then the destination node waits for the
data to be written into destination memory, but does not send an
acknowledgement write reply to the source.
Note that the speed with which the destination user application responds to
the Write Data Request with a Write Data Authorisation will limit the rate at
which RMAP commands can be processed by the destination node. The
SpaceWire interface will block during this period, since it can only process
one command at a time. In some cases, for example writing to control or
configuration registers, the Write Data Request and Write Data Indication
are implicit in the actual write operation so there is no appreciable delay and
one command can immediately follow the previous one.
The destination user application may reject the command for any reason it
likes. For example the write address might not be 32-bit aligned, the length
might not be a multiple of 4-bytes when the user application would like it to

 ECSS-E-50-11 Draft F
 4th December 2006

13

be, or the address range may fall partially or completely outside an acceptable
memory address region.

6.3.6 Write errors
There are four principal types of error that can arise during a write operation:
Write Command Header Error, Write Authorisation Rejection, Write
Command Data Error and Write Reply Error.
The sequence of events that occurs when there is an error in the header of the
write command is illustrated in Figure 6-6.

Write Request
Write
Command

Source Destination

Record
Packet
Error

Figure 6-6 Write Command Header Error

The Write Command packet arrives at the destination and its header is found
to be in error. This fact is added to the error statistics in the destination node.
The remainder of the packet is discarded. No other action is taken at the
destination node, specifically no data is written into the memory of the
destination node and no write reply packet is sent back to the source node.
The source node does not receive a write reply packet so no action is taken by
the RMAP protocol in the source node. The user application on the source
node may set a timeout time when it requests RMAP to send the write
command. When no reply is received this timer will time out and detect the
fact that no write reply has been received in the time expected. It is up to the
user application in the source node to provide any command reply timeout
timers. This is not part of R M A P ’s respon sibilities. The reason for this is that
if RMAP is made responsible for the timeout timers and if posted commands
are to be implemented (i.e. many outstanding write commands) then separate
timeout timer and reply-received flags will be required for each outstanding
write request. This could be a large number and is very much application
dependent. Hence the decision to put this responsibility in the user
application at the source node. The user application knows how many
outstanding requests it will need and can provide both posted and non-posted
write operations.
If the write command header is valid, the user application at the destination
node is asked if it will accept the write operation. If it rejects the write
operation then a write error reply is returned to the source node (assuming
that the Ack/No_Ack bit is set in the write command, requesting an
acknowledgement or error code to be sent). This situation is illustrated in
Figure 6-7. When the Write Reply containing the error code is received back
at the source node, a write data error indication (Authorisation Failure) is
signalled to the user application in the source node.

ECSS-E-50-11 Draft F
4th December 2006

14

Write Request

Write Data
Request

Write
Command

Write Reply
Error

Authorisation
Failure

Source Destination

Write Data
Authorisation
Rejection

Figure 6-7 Write Data Authorisation Rejection

The situation that arises when there is an error in the data field of the write
command is shown in Figure 6-8.

Write Request

Write Data
Error Indication

Write
Command
Header

Write Data
Error Reply

Write Data
Failure

Source Destination

Record
Data Error

Write Data
Request
Write Data
Authorisation

Write
Command
Data

Figure 6-8 Write Command Data Error

Since the header of the write command has been received without error, a
request is made to write data to destination node memory (Write Data
Request). This request is granted (Write Data Authorisation) and RMAP
starts to transfer data from the data field of the received packet into
destination node memory. If there is insufficient data in the data field (i.e. the
data field is shorter than the data length provided in the write command
header) then when the EOP is reached data will stop being transferred into
destination memory and an error flag will be raised. Note that in this case the
data CRC will also be transferred to memory. If there is too much data in the
data field then the specified amount of data, defined by the data length field
of the write command header, will be transferred to memory, the rest of the
packet will be discarded and an error flag will be raised. If there is a data

 ECSS-E-50-11 Draft F
 4th December 2006

15

CRC error then an error flag will be raised after the data has been
transferred to destination memory. These various errors will be reported to
the user application running on the destination node (Write Data Error
Indication). Since the header of the write command was intact it is possible to
report the error back to the source. A write reply packet is sent back to the
source node indicating the type of error that has occurred (Write Data Error
Reply see Table 6-1 for a full list of error codes). When this is received at the
source node the error is reported to the application that requested the write
command (Write Data Failure).
It is possible that the write reply is corrupted or for some other reason does
not reach the source node intact. This situation is illustrated in Figure 6-9.

Write Request
Write
Command

Write
Reply

Source Destination

Record
Packet
Error

Write Data
Request
Write Data
Authorisation

Write Data

Write Data
Indication

Figure 6-9 Write Reply Error

The data has been correctly written into destination memory and the
destination application has been informed. The write reply that is sent back
to the source node is corrupted. If the corrupted packet arrives at the source
node (or indeed any other node) it is recorded as a packet receive error.
RMAP informs the application when a write acknowledge is received. It is not
responsible for informing the user application if no acknowledge is received.

6.3.7 Write command parameters
The Write Data Request has to provide the following parameters:
 Destination address
 Source address
 Transaction identifier
 Destination key
 Write command options
 Write address
 Data length
 Data

ECSS-E-50-11 Draft F
4th December 2006

16

6.4 Read Command

6.4.1 Read command format (logical addressing)
The read command provides a means for one node, the source node, to read
one or more bytes of data from the memory of a destination node. The format
of the command when using logical addressing is shown in Figure 6-10.

Read Address (MS) Read Address Read Address Read Address (LS)

Data Length (MS) Data Length Data Length (LS) Header CRC

EOP

First byte transmitted

Last byte transmitted

Destination Logical Address Protocol Identifier Packet Type, Command
Source Path Addr Len Destination Key

Source Logical Address Transaction Identifier (MS) Transaction Identifier (LS) Extended Read Address

Read = 0 Read = 0Command = 1 Increment/
No inc. address

Read = 1
(Ack/No_Ack)Reserved = 0

Bits in Packet Type / Command / Source Path Address Length Byte

MSB

Packet Type Command

Source Path
Address Len = 0

Source Path
Address Len = 0

LSB

Source Path Address Length

Figure 6-10 Read Command Format (Logical Addressing)

The Destination Logical Address is the logical address on the SpaceWire
network of the node from which data is to be read.
The Protocol Identifier byte is set to the value 1 (0x01) which is the Protocol
Identifier for the Remote Memory Access protocol.
The Packet Type field is set to 01b indicate that the packet is a command
packet, rather than a reply packet.
The Command field holds the read command.
Write/Read bit is clear (0) to indicate that it is a read command.
Verify before write is clear (0) as there is no writing of data.
Ack/No_Ack is set (1) to indicate that a reply will be generated which will
contain the data read.
T h e com m an d option “In crem en t / N o In crem en t Address” is u sed for m u ltiple
data byte transfers. If set (1) it causes the read address in the destination to
be incremented after every byte (or word as determined by the destination
unit) has been read so that data bytes are read from consecutive memory
locations. If not set (0) the read address is not incremented so successive data
bytes (or words as determined by the destination unit) are read from the
same memory location. Note that the width of the memory word is
determined by the destination unit and can be any multiple of 8-bits. For
example, if the width of the destination unit memory word is 32-bits then four
data bytes from the data field of the command are read from one memory
location in the destination unit. Normally the memory address would be
aligned on a 32-bit boundary when doing 32-bit reads.
The Source Path Address Length field is set to zero when logical addressing is
being used.
The Destination Key byte contains an eight-bit code holding the user
destination key. This value is passed to the destination user application for

 ECSS-E-50-11 Draft F
 4th December 2006

17

authorisation. If it is not the value expected by the destination user
application then the command will be rejected and not executed. An invalid
destination key error will be returned to the source of the read command.
The Source Logical Address byte contains the logical address of the source of
the read command packet.
The Transaction Identifier bytes are set to the next transaction identifier in
the sequence held by the source node. This uniquely identifies the transaction
being started by the read command. The reply to the read command will
contain the same transaction identifier and can thus be readily matched to
the specific command that caused the reply.
The Extended Read Address byte holds the most-significant 8-bits of the
memory address to be read. This extends the 32-bit memory address to 40-
bits allowing access to 1 Terabyte of memory space in each node.
The four Read Address bytes hold the bottom 32-bits of the memory address
from which data is to be read. The first byte sent in the command is the most
significant byte of the address.
The three Data Length bytes contain the length, in bytes, of the data that is
to be read. If a single byte is to be read this field is set to one. If set to zero
then no bytes will be read from memory which may be used as a test
transaction. The first byte sent is the most significant byte of the data length.
The Header CRC byte is an 8-bit CRC used to confirm that the header is
correct before executing the command.
EOP character is the End Of Packet marker of the SpaceWire packet.

6.4.2 Read reply format (logical addressing)
The read reply contains either the data that was read from the destination
node, or an error code indicating why data could not be read. The reply to a
read command is sent by the destination node back to the source of the read
command. The format of the read reply when using logical addressing is
illustrated in Figure 6-11.

Source Logical Address Protocol Identifier Packet Type, Command,
Source Path Addr Len Status

Destination Logical Address Transaction Identifier (MS) Transaction Identifier (LS) Reserved = 0

Data Length (MS) Data Length Data Length (LS) Header CRC

Data Data Data Data

Data Data Data Data

Data Data CRC EOP

First byte transmitted

Last byte transmitted

Read = 0 Read = 0Response = 0 Increment/
No inc. address

Read = 1
(Ack/No Ack)Reserved = 0

Bits in Packet Type / Command / Source Address Path Length Byte

MSB

Packet Type Command

Source Path
Address Length

Source Path
Address Length

LSB

Source Path Address Length

Figure 6-11 Read Reply Format (Logical Addressing)

ECSS-E-50-11 Draft F
4th December 2006

18

The Source Logical Address byte contains the logical address of the source of
the read command packet, as specified in the read command Source Logical
Address field.
The Protocol Identifier byte is set to the value 1 (0x01) which is the Protocol
Identifier for the Remote Memory Access protocol.
The Packet Type field is 00b to indicate that this is a reply packet.
The Command and Source Path Address Length field are set to the same
values as in the command byte of the read command.
The Status byte provides the status of the read command. This is set to zero if
the command executed successfully and to a non zero error code if there was
an error. See sub-clause 6.6 for a description of the possible error codes.
Destination Logical Address the logical address of the unit sending the reply.
The Transaction Identifier bytes are set to the same value as provided in the
read command. This is so that the source of the read command can associate
the reply and data in the reply with the original read command.
The three Data Length bytes contain the length, in bytes, of the data that is
to be read and returned in the reply packet. The first byte sent is the most
significant byte of the data length. If the read reply packet is indicating an
error, i.e. the status byte is non-zero, then the Data Length will normally be
zero and there will be no data. Note that the data length in the reply may be
a different value to the data length in the command, if for whatever reason
fewer bytes are returned than requested.
The Header CRC byte is an 8-bit CRC used to confirm that the header of the
reply packet has been received without error.
The Data bytes contain the data that has been read from the memory of the
destination node. When reading from memory organised in words (e.g. 32-bit
words) then the first byte sent is the most-significant byte of the word.
The Data CRC is an 8-bit CRC error check code used to confirm that the data
was correctly transferred. Note that the data CRC is always present. When
there is no data (data length is zero) the data CRC is set to 0x00.
EOP character is the End Of Packet marker of the SpaceWire packet.

6.4.3 Read command format (path addressing)
The format of the command when using path addressing is shown in Figure
6-12.

 ECSS-E-50-11 Draft F
 4th December 2006

19

Destination Path Address

Read Address (MS) Read Address Read Address Read Address (LS)

Data Length (MS) Data Length Data Length (LS) Header CRC

Destination Path Address Destination Path Address

EOP

First byte transmitted

Last byte transmitted

Destination Logical Address Protocol Identifier Packet Type, Command
Source Path Addr Len Destination Key

Source Path Address Source Path Address Source Path Address Source Path Address

Source Logical Address Transaction Identifier (MS) Transaction Identifier (LS) Extended Read Address

Read = 0 Read = 0Command = 1 Increment/
No inc. address

Read = 1
(Ack/No_Ack)Reserved = 0

Bits in Packet Type / Command / Source Path Address Length Byte

MSB

Packet Type Command

Source Path
Address Length

Source Path
Address Length

LSB

Source Path Address Length

Figure 6-12 Read Command Format (Path Addressing)

The Destination Address is the address on the SpaceWire network of the node
from which data is to be read. When using path addressing the destination
address is made up of two parts: the Destination Path Address bytes which
are optional (shaded in Figure 6-12) and the Destination Logical Address.
When path addressing is being used the Destination Path Address bytes
contain the path to the destination node. The Destination Logical Address is
byte is then set to the logical address of the destination node or to the default
value 254 (0xFE).
When path addressing is being used the Source Path Address Length field
has to be set to the smallest number of 32-bit words that can be used to
contain the path address from the destination node that is being written to
back to the source of the command packet. For example, if three path address
bytes are required then the Source Path Address Length field is set to one.
The Source Path Address bytes contain any required path address bytes
needed to route the reply packet from the destination node back to the source
node. If logical addressing is being used then the Source Address bytes are
not present.
All other fields are the same as when using logical addressing.

6.4.4 Read reply format (path addressing)
The format of the read reply when using path addressing is illustrated in
Figure 6-13.

ECSS-E-50-11 Draft F
4th December 2006

20

Source Path Address

Source Logical Address Protocol Identifier Packet Type, Command,
Source Path Addr Len Status

Destination Logical Address Transaction Identifier (MS) Transaction Identifier (LS) Reserved = 0

Data Length (MS) Data Length Data Length (LS) Header CRC

Data Data Data Data

Source Path Address Source Path Address

Data Data Data Data

Data Data CRC EOP

First byte transmitted

Last byte transmitted

Read = 0 Read = 0Response = 0 Increment/
No inc. address

Read = 1
(Ack/No Ack)Reserved = 0

Bits in Packet Type / Command / Source Address Path Length Byte

MSB

Packet Type Command

Source Path
Address Length

Source Path
Address Length

LSB

Source Path Address Length

Figure 6-13 Read Reply Format (Path Addressing)

The Source Path Address bytes contain any required path address bytes
needed to route the reply packet from the destination node back to the source
node. The value of the Source Path Address bytes are as specified in the
Source Address field of the read command. Any Source Path Address bytes
are stripped off by the time the reply reaches the source of the read command.
The Command and Source Path Address Length field are set to the same
values as in the command byte of the read command. In the reply the Source
Path Address Length bits do not indicate extra words in the reply packet.
They are just a copy of the values in the original command.
All other fields in the read reply when using path addressing are the same as
when using logical addressing.

6.4.5 Read action
The operation of the read command is illustrated in the sequence diagram of
Figure 6-14.

Read Request

Read Data
Request

Read
Command

Read
Reply

Read Data
Confirmation

Source Destination

Read Data
Response

Figure 6-14 Read Command/Reply Sequence

 ECSS-E-50-11 Draft F
 4th December 2006

21

The read command sequence starts when an application requests to perform
a read operation (Read Request). The read command is constructed and sent
to the destination node (Read Command). When the read command arrives at
the destination it is flagged to the user application on the destination node
(Read Data Request). The header of the read reply packet is formed and the
requested data appended to it. The read reply containing the data is then sent
back to the source of the read command. When it arrives there the user
application that requested the data is informed (Read Data Confirmation).

6.4.6 Read errors
There are four principal types of error that can occur when executing a read
command: read command error, read authorisation rejection, read reply
header error and read reply data error. These errors will now be considered.
The sequence of events following a read command error are illustrated in
Figure 6-15.

Read Request
Read
Command

Source Destination

Record
Packet Error

Figure 6-15 Read Command Header Error

If the read command is corrupted but arrives at the destination node then a
packet error will be recorded at the destination, but no other action will be
taken by the destination node. It will not read any data and will not return a
read reply packet. If the read command is lost altogether then the destination
node would know nothing about the read command at all and would not be
able to record a packet error.
If indication of this type of error is required at the source node then it is up to
the user application at the source to set a timeout timer for the reply to the
read command.
A read command may be received correctly (no header CRC error) but may
still be rejected by the destination node. For example the read command may
be for a different device type than that of the destination node, or the read
command may be requesting data from an invalid memory address within the
destination node. This situation is illustrated in Figure 6-16.

ECSS-E-50-11 Draft F
4th December 2006

22

Read Request

Read Data
Request

Read
Command

Read
Reply
Authorisation
Error

Authorisation
Failure

Source Destination

Read
Authorisation
Rejection

Figure 6-16 Read Authorisation Rejection

When the read command arrives without error at the destination node its
parameters are passed to the user application in the destination for
authorisation. The read request, in this case, is rejected (Read Authorisation
Rejection) and an error message is sent back to the source node (Read Reply
Authorisation Error). When this error message arrives at the source node it
causes an Authorisation Failure to be flagged to the user application in the
source node.
The situation that arises following a read reply header error is shown in
Figure 6-17.

Read Request

Read Data
Indication

Read
Command

Read
Reply

Source Destination

Read Data
Response

Record
Packet
Error

Figure 6-17 Read Reply Header Error

The read command is received by the destination node and a reply returned
to the source node containing the requested data. Either the reply packet gets
lost altogether or the header of the read reply is received corrupted and a
packet error is recorded at the source. Because there is an error in the header
it is not known for certain what transaction identifier the reply packet is for,
so nothing else can be done by RMAP.

 ECSS-E-50-11 Draft F
 4th December 2006

23

If the user application at source has set a timeout timer for the read reply,
then it will be able to detect the missing response, but this is outside the
scope of the RMAP.
The result of an error in the data field of a read reply is illustrated in Figure
6-18.

Read Request

Read Data
Indication

Read
Command

Read
Reply

Read Data
Failure

Source Destination

Read Data
Response

Figure 6-18 Read Reply Data Error

If the header of the read reply packet is received intact but the data field is
corrupted as indicated by an incorrect data field length (too long or too short)
or by a CRC error, then an error can be flagged to the application
immediately (Read Data Failure) without having to wait for a timeout.

6.4.7 Read command parameters
The Read Data Request has to provide the following parameters:
 Destination address
 Source address
 Transaction identifier
 Destination key
 Read command options
 Read address
 Data length

Note that RMAP does not handle the user application receive buffers,
otherwise it would have to maintain at least a pointer for every outstanding
read request. It is up to the user application to handle any receive buffers.
The appropriate receive buffer for a read reply may be identified in the user
application by the transaction identifier in the read reply.

6.5 Read-Modify-Write Command

6.5.1 Read-modify-write command format (logical
addressing)

The read-modify-write command provides a means for a source node, to read
a memory location in a destination node, modify some of the bits read and
then write the new value back to the same memory location. The original

ECSS-E-50-11 Draft F
4th December 2006

24

value read from memory is returned to the source node. The format of the
command when using logical addressing is shown in Figure 6-19.

Destination Logical Address Protocol Identifier Packet Type, Command
Source Path Addr Len Destination Key

Source Logical Address Transaction Identifier (MS) Transaction Identifier (LS) Extended RMW Address

RMW Address (MS) RMW Address RMW Address RMW Address (LS)

Data +Mask Length (MS)
= 0x00

Data + Mask Length
= 0x00

Data + Mask Length (LS) =
0x00, 0x02, 0x04, 0x06 or 0x08 Header CRC

Data (MS) Data Data Data (LS)

Data/Mask CRC EOP

First byte transmitted

Last byte transmitted

Read = 0 Verify Data
Before WR = 1Command = 1 Incr. address

= 1
Ack/No_Ack

= 1Reserved = 0

Bits in Packet Type / Command / Source Address Path Length Byte

MSB

Packet Type Command

Mask (MS) Mask Mask Mask (LS)

Source Path
Address Len = 0

Source Path
Address Len = 0

LSB

Source Path Address Length

Figure 6-19 Read-Modify-Write Command Format
(Logical Addressing)

The Destination Logical Address is the same as for a read or write command.
The Protocol Identifier byte is set to the value 1 (0x01) which is the Protocol
Identifier for the Remote Memory Access protocol.
The Packet Type field is 01b, i.e. the command/reply bit is set, to indicate that
the packet is a command packet, rather than a reply packet.
The Command field holds the read-modify-write command.
The Write/Read bit is clear (0) for a read-modify-write command.
The Verify Data Before Write bit is set (1) so that the data is always verified
before it is used to update the memory location. This also distinguishes a
read-modify-write from a read command.
The Ack/No_Ack bit is set (1) so that a reply to the read-modify-write
command is always produced. This reply will contain the data initially read
from the register in the destination node.
T h e “In crem en t / N o In crem en t Address” bit is set (1) so that the destination
memory address is incremented if the width of the memory is less than four
bytes (32-bits). This means that when more than one byte is to be read-
modified-written the address will be incremented if byte wide memory is
being used. Note that the width of the memory word is determined by the
destination unit and can be any multiple of 8-bits. For example, if the width
of the destination unit memory word is 32-bits then four data bytes from the
data field of the command are read and written into one memory location in
the destination unit. Normally the memory address would be aligned on a 32-
bit boundary when doing 32-bit read-modify-writes.
The Source Path Address Length field has the same function as for the read
and write commands.
The Destination Key byte contains an eight-bit code holding the user
destination key. This value is passed to the destination user application for

 ECSS-E-50-11 Draft F
 4th December 2006

25

authorisation. If it is not the value expected by the destination user
application then the command will be rejected and not executed. An invalid
destination key error will be returned to the source of the read-modify-write
command.
The Source Logical Address byte contains the logical address of the source of
the RMW command packet. If the source node does not have a logical address
because only path addressing is being used then the Source Logical Address
byte must be set to 254 (0xFE) which is the default logical address.
The Transaction Identifier bytes are set to the next transaction identifier in
the sequence held by the source node. This uniquely identifies the transaction
being started by the RMW command. The reply to the RMW command will
contain the same transaction identifier and can thus be readily matched to
the specific command that caused the reply.
The Extended RMW Address byte holds the most-significant 8-bits of the
memory address to be read-modified-written. This effectively extends the 32-
bit memory address to 40-bits allowing access to 1 Terabyte of memory space
in each node.
The four RMW Address bytes hold the bottom 32-bits of the memory address
which is to be read-modified-written. The first byte sent in the command is
the most significant byte of the address. When combined with the Extended
RMW Address byte a 40-bit memory address is provided.
The three Data Length bytes contain the length of the data that is to be
written. In a read-modify write command this gives the total length of data
(data and mask) sent in the command, which is twice the amount of data to
be read and written. For example if a 2-byte word is to be written, then the
data length will be 0x04. There will be two data bytes and two mask bytes in
the command. Two bytes will be read from memory and returned to the
source node. Two bytes will be written combining the read data, the data from
the command and the mask. The maximum amount of data that can be read-
modified-written with a read-modify-write command is 4 bytes. Hence the
data length can only take on values of 0x00, 0x02, 0x04, 0x06 or 0x08. The
first byte sent is the most significant byte of the data length. If an invalid
data length (0x01, 0x03, 0x05, 0x07 or greater than 0x08) is specified then an
error will be returned to the source. If the data length is zero no data will be
read or written.
The Header CRC byte is an 8-bit CRC used to confirm that the header is
correct before executing the command.
The Data bytes contain the data that is to be combined with the data read
from memory and the mask, and then written into the memory of the
destination node. When writing to memory organised in words (e.g. 32-bit
words) then the first byte sent is the most-significant byte of the word. The
set of 0, 1, 2, 3 or 4 data bytes precede the corresponding set of 0, 1, 2, 3, or 4
mask bytes.
The Mask bytes are used by the destination application to define how the
data to be written to memory is formed. For example, data to be written could
be selected on a bit by bit basis from the data send in the command when the
corresponding mask bit is set (1) or from the data read in the reply when the
mask bit is clear (0).

Written Data = (Mask AND Command_Data) OR (NOT Mask AND
Read_Data).

This example is shown in Figure 6-20. The destination user application may
implement different schemes for example test and set.

ECSS-E-50-11 Draft F
4th December 2006

26

1 0 0 0 1 0 0 0

1 0 0 0 1 1 1 0

1 1 1 0 0 0 1 1

Data in command (Data)

Mask in command (Mask)

Data read from destination memory and returned to source (Read)

1 1 1 0 1 0 0 1 Data written to destination memory
= (Mask AND Data) OR (NOT Mask.Read)

Figure 6-20 Example Operation of Read-Modify-Write
Command

The Data/Mask CRC contains an 8-bit CRC error check code used to confirm
that the data and mask information was correctly transferred. The read-
modify-write command will only be executed if there is no error in the
data/mask. Note that the Data/Mask CRC is always present. When there is
no data (data length is zero) the Data/Mask CRC is set to 0x00.
EOP character is the End Of Packet marker of the SpaceWire packet.

6.5.2 Read-modify-write reply format (logical addressing)
The reply to a read-modify-write command is sent by the destination back to
source of the command. The reply is used to indicate the success or failure of
the read-modify-write command and to return the data originally read from
the destination memory. The format of the read-modify-write reply when
using logical addressing is shown in Figure 6-21.

Source Logical Address Protocol Identifier Packet Type, Command,
Source Path Addr Len Status

Destination Logical Address Transaction Identifier (MS) Transaction Identifier (LS) Reserved = 0

Data Length (MS) = 0 Data Length = 0 Data Length (LS) =
0x01, 0x02, 0x03 or 0x04 Header CRC

Data Data Data Data

Data CRC EOP

First byte transmitted

Last byte transmitted

Read = 0 Verify Data
Before WR = 1Response = 0 Inc. address

= 1
Ack/No_Ack

= 1Reserved = 0

Bits in Packet Type / Command / Source Path Address Length Byte

MSB

Packet Type Command

Source Path
Address Len = 0

Source Path
Address Len = 0

LSB

Source Path Address Length

Figure 6-21 Read-Modify-Write Reply Format (Logical
Addressing)

The Source Logical Address byte contains the logical address of the source of
the read-modify-write command packet, as specified in the command Source
Address field.
The Protocol Identifier byte is set to the value 1 (0x01) which is the Protocol
Identifier for the Remote Memory Access protocol.
The Packet Type field is 00b to indicate that this is a reply packet.

 ECSS-E-50-11 Draft F
 4th December 2006

27

The Command and Source Path Address Length field are set to the same
values as in the command byte of the read-modify-write command.
The Status byte provides the status of the read-modify-write command. This
is set to zero if the command executed successfully and to a non zero error
code if there was an error. See error codes sub-clause 6.6.
The Transaction Identifier bytes are set to the same value as provided in the
read-modify-write command. This is so that the source of the command can
associate the reply with the original read-modify-write command.
The three Data Length bytes contain the length, in bytes, of the data that is
to be read and returned in the reply packet. The first byte sent is the most
significant byte of the data length. For a read-modify-write command the
data length can be 0, 1, 2, 3 or 4 only. If the read reply packet is indicating an
error, i.e. the status byte is non-zero, then the Data Length will normally be
zero and there will be no data.
The Header CRC byte is an 8-bit CRC used to confirm that the header of the
reply packet has been received without error.
The Data bytes contain the data that has been read from the memory of the
destination node. When reading from memory organised in words (e.g. 32-bit
words) then the first byte sent is the most-significant byte of the word.
The Data CRC is an 8-bit CRC error check code used to confirm that the data
was correctly transferred. Note that the data CRC is always present. When
there is no data (data length is zero) the data CRC is set to 0x00.
EOP character is the End Of Packet market of the SpaceWire packet.

6.5.3 Read-modify-write command format (path
addressing)

The format of the command when using path addressing is shown in Figure
6-22.

Destination Path Address

Destination Logical Address Protocol Identifier Packet Type, Command
Source Path Addr Len Destination Key

Source Path Address Source Path Address Source Path Address Source Path Address

Source Logical Address Transaction Identifier (MS) Transaction Identifier (LS) Extended RMW Address

RMW Address (MS) RMW Address RMW Address RMW Address (LS)

Data +Mask Length (MS)
= 0x00

Data + Mask Length
= 0x00

Data + Mask Length (LS) =
0x00, 0x02, 0x04, 0x06 or 0x08 Header CRC

Data (MS) Data Data Data (LS)

Destination Path Address Destination Path Address

Data/Mask CRC EOP

First byte transmitted

Last byte transmitted

Read = 0 Verify Data
Before WR = 1Command = 1 Incr. address

= 1
Ack/No_Ack

= 1Reserved = 0

Bits in Packet Type / Command / Source Address Path Length Byte

MSB

Packet Type Command

Mask (MS) Mask Mask Mask (LS)

Source Path
Address Length

Source Path
Address Length

LSB

Source Path Address Length

Figure 6-22 Read-Modify-Write Command Format (Path
Addressing)

ECSS-E-50-11 Draft F
4th December 2006

28

The Destination Address is the address on the SpaceWire network of the node
from which data is to be read. When using path addressing the destination
address is made up of two parts: the Destination Path Address bytes which
are optional (shaded in Figure 6-22) and the Destination Logical Address.
When path addressing is being used the Destination Path Address bytes
contain the path to the destination node. The Destination Logical Address is
byte is then set to the logical address of the destination node or to the default
value 254 (0xFE).
When path addressing is being used the Source Path Address Length field
has to be set to the smallest number of 32-bit words that can be used to
contain the path address from the destination node that is being written to
back to the source of the command packet. For example, if three path address
bytes are required then the Source Path Address Length field is set to one.
The Source Path Address bytes contain any required path address bytes
needed to route the reply packet from the destination node back to the source
node. If logical addressing is being used then the Source Address bytes are
not present.
All other fields are the same as when using logical addressing.

6.5.4 Read-modify-write reply format (path addressing)
The reply to a read-modify-write command is sent by the destination back to
source of the command. The reply is used to indicate the success or failure of
the read-modify-write command and to return the data originally read from
the destination memory. The format of the write reply is shown in Figure
6-23

Source Path Address

Source Logical Address Protocol Identifier Packet Type, Command,
Source Path Addr Len Status

Destination Logical Address Transaction Identifier (MS) Transaction Identifier (LS) Reserved = 0

Data Length (MS) = 0 Data Length = 0 Data Length (LS) =
0x00, 0x01, 0x02, 0x03 or 0x04 Header CRC

Data Data Data Data

Source Path Address Source Path Address

Data CRC EOP

First byte transmitted

Last byte transmitted

Read = 0 Verify Data
Before WR = 1Response = 0 Inc. address

= 1
Ack/No_Ack

= 1Reserved = 0

Bits in Packet Type / Command / Source Path Address Length Byte

MSB

Packet Type Command

Source Path
Address Length

Source Path
Address Length

LSB

Source Path Address Length

Figure 6-23 Read-Modify-Write Reply Format (Path
Addressing)

The Source Path Address bytes contain any required path address bytes
needed to route the reply packet from the destination node back to the source
node.
The Command and Source Path Address Length field are set to the same
values as in the command byte of the read-modify-write command. In the
reply the Source Path Address Length bits do not indicate extra words in the
reply packet. They are just a copy of the values in the original command.

 ECSS-E-50-11 Draft F
 4th December 2006

29

All other fields are the same as when using logical addressing.

6.5.5 Read-modify-write action
The operation of the read-modify-write command is illustrated in the
sequence diagram of Figure 6-24.

RMW Request

RMW Data
Request

RMW
Command

RMW
Reply

RMW Complete
Confirmation

Source Destination

Data Read and Write
Authorisation

Write Data

Write Data
Indication

Figure 6-24 Read-Modify-Write Command/Reply
Sequence

The read-modify-write command sequence begins when an application
requests to perform a read-modify-write operation (RMW Request). In reply
to this the source node builds the RMW command and sends it across the
SpaceWire network to the destination node (RMW Command). When the
RMW Command arrives at the destination, the header and data fields
(including the mask bytes) are first checked for errors, since the Verify Before
Write bit is always set in the RMW command. If the header and the data do
not contain any errors then the user application at the destination node is
asked if it will accept the RMW operation (RMW Data Request). If the user
application accepts the request it will read the memory location(s) specified in
the RMW command and return the data to RMAP (Data Read and Write
Authorisation). The data to be written to the memory locations is then
calculated from the data read from memory and the data and mask fields of
the RMW command. The new data is then written to the memory location(s)
that was previously read.
Once data has been written to memory the user application running on the
destination node is informed that a RMW operation has taken place (RMW
Indication). Since the acknowledgement bit (Ack/No_Ack) is always set for a
RMW command, a reply will be sent back to the source of the command
containing the data originally read from the destination memory (RMW
Reply). When the write reply is received, the source node indicates successful
completion of the write request (RMW Complete Confirmation).

6.5.6 Read-modify-write errors
There are four principal types of error that can arise during a read-modify-
write operation: RMW Command Error, RMW Authorisation Rejection, RMW
Reply Header Error and RMW Reply Data Error.

ECSS-E-50-11 Draft F
4th December 2006

30

The sequence of events that occurs when there is an error in the header of the
RMW command is illustrated in Figure 6-25.

RMW Request
RMW
Command

Source Destination

Record
Packet
Error

Figure 6-25 Read-Modify-Write Command Header Error

The RMW command packet arrives at the destination and its header is found
to be in error. This fact is added to the error statistics in the destination node
and the packet is discarded. No other action is taken at the destination or
source nodes.
The situation that arises when there is an error in the data field of the read-
modify-write command is shown in Figure 6-26.

RMW Request

RMW Data
Error Indication

RMW
Command
Header

RMW Data
Error Reply

RMW Data
Failure

Source Destination

Record
Data Error

RMW
Command
Data

Figure 6-26 Read-Modify-Write Command Data Error

The header of the RMW command has been received without error but the
data CRC indicates that there has been an error in the data field. The RMW
command shall not be executed. A data error is recorded in the destination
node. The user application in the destination node is informed that a RMW
command has been received with corrupted data. Since the header of the
RMW command was intact it is also possible to report the error back to the
source. A RMW reply packet containing the appropriate error code is sent
back to the source node (RMW Data Error Reply). When this is received at
the source node the error is reported to the user application (RMW Data
Failure). RMAP returns the error code and the transaction identifier to the
source node so that the user application can determine the original of the
RMW command and the type of error that occurred.

 ECSS-E-50-11 Draft F
 4th December 2006

31

If the RMW command is valid, the user application at the destination node is
asked if it will accept the RMW operation (RMW Data Request). If it rejects
the RMW operation (RMW Authorisation Rejection) then an RMW error reply
is returned to the source node (RMW Reply Error). This situation is
illustrated in Figure 6-27. When the RMW Reply containing the error code is
received back at the source node, a RMW error indication (RMW Failure) is
signalled to the user application in the source node.

RMW Request

RMW Data
Request

RMW
Command

RMW Reply
Error

RMW
Failure

Source Destination

RMW
Authorisation
Rejection

Figure 6-27 Read-Modify-Write Authorisation Rejection

It is possible that the RMW reply is corrupted or for some other reason does
not reach the source node intact. This situation is illustrated in Figure 6-28.

RMW
Reply

Source Destination

Record
Packet
Error

RMW Request

RMW Data
Request

RMW
Command

Data Read and Write
Authorisation

Write Data

Write Data
Indication

Figure 6-28 Read-Modify-Write Reply Error

The data has been correctly written into destination memory and the
destination application has been informed. The RMW reply that is sent back
to the source node is corrupted. If the corrupted packet arrives at the source
node (or indeed any other node) it is recorded as a packet receive error.
If the read operation succeeds but the write operation fails, due to for
instance a write protected memory, then the complete transaction is
considered an Authorisation failure. The source user application, in fact
immediately rejects this as an authorisation failure as the command is trying
to RMW an area of protected memory.

ECSS-E-50-11 Draft F
4th December 2006

32

The result of an error in the data field of a RMW reply is illustrated in Figure
6-29.

RMW
Reply

Source Destination

RMW Request

RMW Data
Request

RMW
Command

Data Read and Write
Authorisation

Write Data

Write Data
Indication

RMW Data
Failure

Figure 6-29 RMW Reply Data Error

If the header of the RMW reply packet is received intact but the data field is
corrupted as indicated by an incorrect data field length (too long or too short)
or by a CRC error, then an error can be flagged to the application
immediately (RMW Data Failure) without having to wait for an application
timeout.

6.5.7 Read-modify-write command parameters
The RMW Request has to provide the following parameters:
 Destination address
 Source address
 Transaction identifier
 Destination key
 RMW command
 Memory address
 Data length
 Data
 Mask

6.6 Error codes
The possible error codes that can arise are listed in Table 6-1. These error
codes are returned in the status field of any reply including
acknowledgements and error replies.

 ECSS-E-50-11 Draft F
 4th December 2006

33

Table 6-1 Error Codes
Error Code Error Error Description
0 Command executed

successfully

1 General error code The detected error does not fit into the
other error cases or the node does not
support further distinction between the
errors

2 Unused RMAP
Packet Type or
Command Code

The header CRC was decoded correctly
but the packet type is reserved or the
command is not used by the RMAP
protocol. No reply should be sent if the
ACK bit is not set.

3 Invalid destination
key

The header CRC was decoded correctly
but the device key did not match that
expected by the destination user
application.

4 Invalid data CRC Error in the CRC of the data field
5 Early EOP EOP marker detected before the end of

the data.
6 Cargo too large The expected amount of SpaceWire

packet cargo has been received without
receiving an EOP or EEP marker.

7 EEP EEP marker detected at or before the
end of the data. Indicates that there
was a communication failure of some
sort on the network.

8 Reserved Reserved
9 Verify buffer

overrun
The verify before write bit of the
command was set so that the data field
was buffered in order verify the data
CRC before transferring the data to
destination memory. The data field was
longer than could fit inside the verify
buffer resulting in a buffer overrun.
Note that the command will not be
executed in this case.

10 RMAP Command
not implemented or
not authorised

The destination user application did not
authorise the requested operation. This
may be because the command requested
has not been implemented.

11 RMW data length
error

The amount of data in a RMW
command does not match the data
length field or is invalid (0x01, 0x03,
0x05, 0x07 or greater than 0x08).

12 Invalid destination
logical address

The header CRC was decoded correctly
but the destination logical address was
not the value expected by the
destination.

13-255 Reserved All unused error codes are reserved

ECSS-E-50-11 Draft F
4th December 2006

34

The fields of a command shall be checked for errors in the order in which they
arrive at a destination. In the event of more than one type of error being
detected, the error code returned to the source of the command shall be the
first error detected i.e. the first field in which there is an error shall
determine the error code returned.
Note that the General Error Code (code number 1) should not normally be
used as all the possible error codes have been included in the table.
The behaviour when reserved bits or fields are not received with the defined
value is defined in Table 6-2. When Bit 7, a reserved bit, is set (1) then the
command should not be executed and an error should be recorded. Only if bit
7 and bit 6 are both set and if the ACK bit is set should a reply be sent to the
source of the command with error code 2.

Table 6-2 RMAP Packet Type and Node Action

Bit 7 Bit 6 Function Node action

0 0 Reply Packet Handle the packet as defined in this
standard

0 1 Command Packet Handle the packet as defined in this
standard

1 0 Reserved Packet Type Discard the packet and do nothing

1 1 Reserved Packet Type Discard the packet. If the ACK bit is set
send reply with error code 2, otherwise
do nothing

Similarly, when a reply is received with the reserved field in the command
byte set (1) or with the ACK bit zero, RMAP shall discard the reply and
should record the error in a status register.
Not all nodes have to be able to receive replies. Only those that send
commands need to be able to receive replies. When a reply arrives at a node
which is not designed to receive a reply, the reply packet shall be discarded.
This error may be recorded in a status register.
Leading zeros in a source path address are ignored. A source path address
containing any non-leading zeros or all zeros may be invalid depending on the
application of RMAP. If the source path address is deemed invalid then no
response is sent. The user application may also record this error in a status
register.

6.7 Partial Implementation of RMAP
Partial implementations of RMAP are permitted where only some commands
or command options are supported. For example a unit might not implement
the read-modify-write command if it did not need it. If a destination receives
a command or a command with options that it does not support then it shall
not authorise the command for execution. If a reply or acknowledgement has
been requested then the Authorisation Failure error shall be sent back to the
source, assuming that a reply has been requested in the command. See sub-
clause 6.9.

_Ref120173896

 ECSS-E-50-11 Draft F
 4th December 2006

35

6.8 RMAP Use Cases (informative)
RMAP is able to support many forms of system operation. In this section
various applications of the RMAP protocol are considered to illustrate the
many ways in which RMAP can be used. The interpretation of the contents of
an RMAP command is dependent upon the application. For example RMAP
may be used to write to memory via a DMA engine in the destination node, or
it may write to memory via a host processor. In either of these two cases the
memory addresses specified in the RMAP command may correspond directly
to the memory address in the destination node that is to be written to. Here
the source node determines where in memory in the destination node the data
is to be written. Alternatively the memory address may be used to identify a
mailbox or buffer in the destination into which the data in the RMAP
command may be placed before being accessed by the destination application.
In this case there is no direct correspondence between the memory address in
the RMAP command and the actual area of memory where the data is finally
written. The mapping between the two is up to the destination node. This
flexibility is one of the key features of RMAP.

6.8.1 Write to memory
This example assumes that the host application at the destination is a DMA
controller attached to a bank of memory. This is illustrated in Figure 6-30.
Table 6-3 gives an example of the corresponding RMAP command fields.

SpaceWire
Interface

RMAP
Interface

DMA Controller Memory

MemPtr = 001000h

DataCtr = 000010h
Data

Data

SpaceWire

SpaceWire-RMAP Interface Destination Application

Figure 6-30 Writing to memory with a DMA controller

Sixteen bytes of data are to be written into the destination memory starting
at location 0x001000. The destination memory, in this example, is 16-bits
wide so the 16 bytes will occupy eight 16-bit words of memory. The Increment
bit in the write command is set to indicate that the DMA controller should
increment its memory address pointer after every write to a memory location.
An acknowledgement is required once the command has completed.

ECSS-E-50-11 Draft F
4th December 2006

36

Table 6-3 Example RMAP command writing to memory

Field No. Bytes Value

Destination Path Address 0 -

Destination Logical Address 1 0x54

Protocol Identifier 1 0x01

Packet Type 01b
Command 1 1011b
Extra Source Path Address Length 00b

Extra Source Path Address 0 -

Destination Key 1 0x42

Source Logical Address 1 0x76

Transaction Identifier 2 0x00 0x04

Extended Write Address 1 0x00

Write Address 4 0x00 0x00 0x10 0x00

Data Length 3 0x00 0x00 0x10

Header CRC 1 0x00

Data 16 0x00 0x01 0x02 0x03
0x04 0x05 0x06 0x07
0x08 0x09 0x0a 0x0b
0x0c 0x0d 0x0e 0x0f

Data CRC 1 0xc5

TOTAL 33

The command sent is a write command with the Acknowledge and Increment
bits both set. The Verify Data Before Write is not set since, in this example
application, it is not deemed necessary to check that the data has been
received correctly before writing the data to memory. If there is an error in
the data this will be indicated in the acknowledgment and the RMAP
command can be resent by the source if required. Note that any resending is
up to the source application and is not part of RMAP, although RMAP does
provide a Transaction Identifier field to help with this.
The Write Address in the RMAP command is set to 0x00 0x00 0x10 0x00. The
DMA controller, in this example, can only access 16 M words of memory so
the top eight-bits of the memory address are not needed. They should be zero
or the destination may reject the command. This is up to the destination
application. The Extended Write Address should also be zero. The amount of
data to be written (16 bytes) is specified in the Data Length field. The full
command for the example is given in the Table 6-3. Note that most of the
values in this table are example values and will change depending on the
specific logical address of the destination, etc.
When the RMAP command arrives at the destination node. It is checked by
the RMAP interface. If the header CRC is correct then the destination

 ECSS-E-50-11 Draft F
 4th December 2006

37

application is asked if it wishes to accept the command. For a DMA controller
it would normally accept the RMAP command if the Write Address and Data
Length specified an area of memory within the range of the DMA controller.
In the example this is the case, so the Write Address is copied to the memory
pointer in the DMA controller and the Data Length is copied to the DMA
Data Counter. Data from the RMAP command is then transferred to the
memory by the DMA controller. Two bytes of data are read from the RMAP
interface and buffered by the DMA controller before being written to memory.
The DMA Data Counter is then decremented by two, since two bytes have
been written, and the DMA Memory Pointer is incremented to point to the
next 16-bit word. Alternatively the Data Length could be divided by 2 when it
is loaded into the DMA Counter, then it would be decremented by one, each
time a 16-bit value is written to memory. The way that this is done is entirely
dependent upon the destination application. When the entire 16-bytes of data
have been written the DMA Counter will decrement to zero and the RMAP
command will be complete. The Data CRC will be checked and if it is correct
then the destination application will be informed that a successful transfer
has taken place. If there is an error in the data, indicated by an invalid CRC,
then the destination application will be informed of the error.
In this example, an acknowledgement has been requested (acknowledgement
bit set in the command) so an acknowledgement will be returned to the source
of the RMAP command. This acknowledgement will indicate if any errors
have occurred.
It is worth noting that in the example command, logical addressing is being
used to address the destination and source nodes: no path addressing is used.
The destination key is to ensure that the RMAP command is for the node
where it ended up. The Destination Logic Address should match the logical
address of the destination and the Destination Key must be a value known to
both the source and destination. If the Destination Key is not the value
expected by the destination then the command will be rejected. There may be
one Destination Key value for all possible RMAP commands to a particular
destination, or there may be a different Destination Key value, for different
types of command or for different memory address ranges. This is up to the
application. All that is required is that the Destination Key in the command
must be acceptable to the destination application.
The Transaction Identifier in the RMAP command is not used by the
destination application, in this example. The destination application would
take note of the Transaction Identifier if, for example, it was important that
data was not written twice to the memory. This could happen if the
acknowledgement sent back to the source was corrupted or went missing and
if the source then resent the RMAP command. In the current example, it does
not matter if the data is written twice to the memory. This would be
important if it were a control register or FIFO that was being written to.
Although, in this example, the Transaction Identifier is not needed by the
destination application, it is needed in the acknowledgement so that the
source can associate the acknowledgement with a particular command. Note
that if the source only sends one command at a time, waiting for any
acknowledgement before proceeding, the value of the Transaction Identifier is
not important. In general it is good practice to have an incrementing
Transaction Identifier, incrementing for each new RMAP command that a
source sends out. This is, however, up to the application.

ECSS-E-50-11 Draft F
4th December 2006

38

6.8.2 Read from memory
Reading from memory is similar to writing to memory and a DMA controller
may be used to control access to the memory, without a processor being
present. In this example, however, a processor is being used instead of a DMA
controller to control access to memory. This is illustrated in Figure 6-31.

SpaceWire
Interface

RMAP Interface

Host
Processor

MemoryMem Addr Reg
SpaceWire

SpaceWire-RMAP Interface Destination Application

Data Len Reg

Data FIFO

Dest Key Reg

Processor
Bus

Status Reg

Figure 6-31 Reading from memory via a host processor

The RMAP interface is connected to the host processor and the memory by
the processor bus. The host processor can access the RMAP interface through
a series of registers which hold the fields of the current RMAP command.
When an RMAP command is received the RMAP interface writes the fields of
the command to the registers in the RMAP interface and then checks the
header CRC. If the header CRC is valid then the host processor is
interrupted, or otherwise flagged, so that it knows a new RMAP command
has been received. The processor can then read the RMAP command
information from the registers in the RMAP interface. The processor then
decides whether it will accept the command.
If the command is not acceptable then the processor writes an appropriate
error code to a status register in the RMAP interface. The RMAP interface
will then send an acknowledgement containing the error code back to the
source of the RMAP command, assuming that an acknowledgement was
requested in the command.
If the command is acceptable then the processor will use the Read Address
and Data Length information to perform the read operation. Words of data
are read from memory and written to the Data FIFO in the RMAP interface.
The Data FIFO has the same data-width as the memory and processor bus.
The RMAP interface converts a (possibly) multi-byte wide data stream from
the Data FIFO to a byte-wide stream as the data is passed to the SpaceWire
interface. When the complete set of data has been read from the memory and
written to the Data FIFO the processor can indicate that it has finished by
writing to the status register in the RMAP interface.
An example of a RMAP command for reading data from memory is given in
Table 6-4.

 ECSS-E-50-11 Draft F
 4th December 2006

39

Table 6-4 Example RMAP command reading from
memory

Field No. Bytes Value

Destination Path Address 0 -

Destination Logical Address 1 0x54

Protocol Identifier 1 0x01

Packet Type 01b
Command 1 0011b
Extra Source Path Address Length 00b

Extra Source Path Address 0 -

Destination Key 1 0x57

Source Logical Address 1 0x76

Transaction Identifier 2 0x00 0x05

Extended Read Address 1 0x00

Read Address 4 0x00 0x00 0x20 0x00

Data Length 3 0x00 0x00 0x10

Header CRC 1 0x83

TOTAL 16

This RMAP command is being sent from the source node with logical address
0x76. It is requesting to read 16 bytes of data starting at address location
0x2000 in the destination node with logical address 0x54.

6.8.3 Reading and Writing to Registers
RMAP can be used to write to configuration registers and to read from status
registers in a destination node.
Reading from a register is done in the same way as reading from memory. If
more than one register is to be read at a consecutive address then they may
be read in one command by setting the Increment Address bit in the
command field. If the destination application has registers which are wider
than 8-bits then multiple bytes may be requested in a single command. For
example to read a 32-bit register at memory location 0x0020 a command to
read 4 bytes at location 0x0020, with the Increment Address bit not set, may
be used.
Writing to a register is identical to writing to memory except that normally
when writing to a register the RMAP interface would check that the data has
been received correctly before writing it to the register. This prevents an
invalid value being written to a configuration register, which could otherwise
adversely affect the operation of the destination node. To ensure that the data
is correct before data is written to the register the Verify Data Before Write
bit has to be set in the Command field of the RMAP command. If this bit is
set the RMAP interface will buffer the complete Data field of the RMAP
command and check that the Data CRC is valid before writing the data to

ECSS-E-50-11 Draft F
4th December 2006

40

the register. Multiple registers, with contiguous addresses may be written, or
read, if the increment address bit in the command field is set.
The Verify Data Before Write bit may also be set when writing to memory,
but the RMAP interface must contain enough buffer space to buffer the entire
Data field of the command so that it can be checked before any data is written
to memory.

6.8.4 Write to FIFO
Writing and reading from memory and registers is relatively straightforward
with the RMAP protocol. Reading and writing to a FIFO is a bit more
involved. This is because the FIFO may become full when writing, or empty
when reading, and because it is not normally possible to recover from writing
erroneous data to a FIFO by resending the correct data or to recover from
loosing data read from a FIFO. Writing to a FIFO is considered in this sub-
section and reading from a FIFO is covered in the following sub-section.
Writing to a FIFO is similar to writing to a register. The address of the FIFO
is specified in the Write Address and the Increment/No Increment Bit is not
set so that the data is written to the same address, that of the FIFO. The
width of the FIFO can be any width provided that the RMAP interface
performs the buffering of data before it is written to the FIFO.
A problem can arise if the FIFO becomes full. There are several possible ways
in which this can be handled depending upon the requirements of the specific
application.
If the FIFO is unlikely to become full for very long then it may be adequate to
block the SpaceWire packet until the FIFO becomes not full again and can
accept more data. The RMAP header is read and checked and data then
starts to be written from the RMAP command data field to the FIFO. When
the FIFO becomes full then no more data can be written so the rest of the
SpaceWire packet cannot be read into the RMAP interface and remains in the
SpaceWire network. When the FIFO can accept more data then more of the
data in the SpaceWire packet can be read. This approach should only be used
when the FIFO cannot become full for more than a very short time. It should
also be noted that if the data is not verified before it is written then it is
possible that erroneous data gets written into the FIFO.
An alternative approach when a FIFO becomes full is to stop writing to the
FIFO and to discard the remainder of a packet. In this case an
acknowledgment should be sent to the source of the RMAP command
indicating the amount of data that was successfully written to the FIFO. The
source can then resend the data that was not written in the previous
command.
Another option is for the destination application to check how much room
there is in the FIFO when it receives the RMAP command header. If there is
insufficient room then either some of the data could be written and an
indication of how much data was written could be sent back to the source, or
the entire packet could be discarded.
Yet another option is for the source application to check the status of the
destination FIFO by reading a status register, using an RMAP read
command, thus finding out how much room is left in the FIFO. It would then
send data up to the limit of the FIFO.
The final option is the most robust approach for writing to a FIFO. Since
writing erroneous data to a FIFO is not desirable, it is better to send data for
writing to a FIFO in small packets which can be verified before being written

 ECSS-E-50-11 Draft F
 4th December 2006

41

to the FIFO. This means that the entire data field of each command has to be
buffered in the RMAP interface and checked before writing. If there is no
room in the FIFO the RMAP interface can wait for the FIFO to start to empty
without adversely affecting the operation of the rest of the SpaceWire
network. Once the complete set of data has been written to the FIFO an
acknowledgement can be sent to the source. The source can then send more
data to the FIFO. If the data is found to be in error it is discarded and not
written to the FIFO. An error code is then sent to the source and the source
can resend the data. This may be implemented as a FIFO which can take in
data in 256 byte chunks (for example). Data for the FIFO is sent in packets
containing no more than 256 bytes. This data is written into the FIFO as it
arrives. At the end of the packet the Data CRC is checked and if OK the data
is accepted by the FIFO i.e. the FIFO write pointer is moved permanently to
the end of the new data and the FIFO can read this new information. If there
is an error in the data that has just been written then the write pointer is set
to the start of the new data, as if it had not been written.

6.8.5 Read from FIFO
Reading from a FIFO has a similar problem to writing to a FIFO. In this case,
however, the FIFO may become empty during a read. For example, a read
from a FIFO may request 100 bytes of data but the FIFO becomes empty
after 20 bytes.
If the FIFO is unlikely to be empty for very long, the RMAP interface may
wait for more data to become available, adding it to the end of the packet that
is being sent as soon as possible. This does leave a packet strung out through
the SpaceWire network while waiting for the rest of the data, which may
adversely affect other traffic on the network.
An alternative is for the RMAP interface to stop reading the FIFO if it
becomes empty and for it to send whatever data it has read in the reply to the
command. In this case the reply to the read request would be terminated
early, returning only the amount of data read. The reply would then contain
the data field set to the desired amount of data (e.g. 100 bytes) but only 20
bytes would be attached to the packet. The 20 bytes of data would be followed
by the one byte Data CRC code and the packet would be terminated by an
EOP. The EOP would indicate that this was a valid packet, not one that was
truncated by an error during transit across the network, in which case an
EEP would have terminated the packet. To prevent the two bytes of the Data
CRC being accepted as data by the source node the source must buffer the
last two bytes received and check that they were not the last two bytes of the
packet, before using them. If a read FIFO reply is received with less than the
expected amount of data then the source may send another read request for
the rest of the data (e.g. the remaining 80 bytes) or it may read the status of
the destination first to check what happened.
Another possibility is for the RMAP interface in the destination to check the
amount of data in FIFO first before it reads it. It can then return the actual
amount of data read in the Data Length field of the reply, along with that
much data.
A final option is for the FIFO data to be read into a buffer in the RMAP
interface before the reply is sent. The correct amount of data can then be
gathered, waiting if necessary for data to become available in the FIFO. Once
the required amount of data has been read the reply can be sent in one go.
This does require buffering in the RMAP interface which limits the amount of
data that can be read in a single command. If the FIFO becomes empty for a
long period of time then it may be appropriate for the RMAP interface to send

ECSS-E-50-11 Draft F
4th December 2006

42

what data it has got, indicating that the full amount of data could not be read
within the time available. This approach could use the memory in the FIFO
if, as for the write FIFO case, reading data from the FIFO was organised in
chunks. Taking the same example as for the write FIFO case of 256 bytes
chunks to be read from the FIFO, when an RMAP read command is received
256 bytes of data are read from the FIFO and returned to the source of the
command. The read pointer of the FIFO is not updated until another read
command is received with a different transaction identifier to the one that
caused the last read. If the transaction identifier is the same as the previous
read command then the same data can be sent again.
There are many ways in which FIFO type operations can be supported by
RMAP. The choice depends upon the particular application requirements.
What RMAP provides is a consistent means of using SpaceWire packets to
perform a wide range of application functions.

6.8.6 Write to Mailbox
RMAP supports reading and writing to mailboxes. A mailbox is a means
passing data to an application without writing directly to memory in the
application. The mailbox is an area of memory made available to the RMAP
interface by the application and which has been given a unique identifier.
This identifier is an RMAP write memory address which is reserved for
accessing the mailbox. Many mailboxes may be used, as required by the
application.
Writing to a mailbox is the same as far as RMAP is concerned as writing
many bytes to a single address location. For example, the RMAP command in
Table 6-5 writes a message to a mailbox. Source address 0x76 is writing to
mailbox zero in destination 0x54. The mailbox address space in this example
is differentiated from the normal directly writable memory space by the value
of the Extended Write Address byte: when it is zero the Write Address
accesses up to 4G locations of directly addressable memory. When it is 0x01 it
references the mailbox space, allowing up to 4G mailboxes to be specified.
Note this is an example use of the Extended Write Address byte. The Write
Address is 0x00000000 referencing mailbox zero. The Increment Address bit
is not set in the command byte and the Data Length is 16 bytes. The
Destination Key is set to a value agreed by the source and destination to give
access to the mailbox.

 ECSS-E-50-11 Draft F
 4th December 2006

43

Table 6-5 Example RMAP command writing to mailbox

Field No. Bytes Value

Destination Path Address 0 -

Destination Logical Address 1 0x54

Protocol Identifier 1 0x01

Packet Type 01b
Command 1 1010b
Extra Source Path Address Length 00b

Extra Source Path Address 0 -

Destination Key 1 0x99

Source Logical Address 1 0x76

Transaction Identifier 2 0x00 0x06

Extended Write Address 1 0x01

Write Address 4 0x00 0x00 0x00 0x00

Data Length 3 0x00 0x00 0x10

Header CRC 1 0xe7

Data 16 0x00 0x01 0x02 0x03
0x04 0x05 0x06 0x07
0x08 0x09 0x0a 0x0b
0x0c 0x0d 0x0e 0x0f

Data CRC 1 0xc5

TOTAL 33

When this command is received at the destination the header is first checked
to make sure that there are no errors and then the fields of the command are
authorised by the application. Assuming that all is in order, the application
authorises writing to the mailbox.
One possible implementation of the mailbox system is a DMA based mailbox
controller. This is illustrated in Figure 6-32. The mailbox DMA is configured
by a host processor, or may have a predetermined configuration. There is a
DMA channel for each mailbox. Each mailbox has a mailbox base pointer
which determines where in memory the mailbox memory resides, and a
mailbox maximum size which specifies the size of the mailbox memory. A
mailbox status register holds the status of the mailbox, for example, whether
the mailbox is empty or is in use.

ECSS-E-50-11 Draft F
4th December 2006

44

SpaceWire
Interface

RMAP
Interface

SpaceWire-RMAP Interface Destination Application

Mailbox DMA

Mailbox Base Ptr
Mailbox Current Ptr
Mailbox Max Size

Mailbox Status

Mailbox Data Size

Memory

Mailbox Memory
Mailbox Memory

Mailbox Memory

Figure 6-32 Writing to mailbox

The RMAP command to write to a mailbox will be authorised if the command
references a mailbox which is not currently in use, if the amount of data to be
written is no larger than the size of the mailbox, and if the Destination Key is
valid for that mailbox. The mailbox current pointer will be set to point to the
start of the mailbox, by loading it with the contents of the mailbox base
pointer. The data size will be loaded with the data length from the RMAP
command. Data will then be transferred into the mailbox memory from the
RMAP command. If the data is transferred successfully with no error, then
the mailbox status will be updated and the host application will be informed
that data is ready in the mailbox. An acknowledgment will be sent to the
source indicating that the data has transferred correctly. If the data contains
an error, then the mailbox status will reflect this and the mailbox will be
considered empty. In this case the acknowledgement sent to the source will
indicate the error and the mailbox write command can be resent, if required.
Mailbox status information may be read over SpaceWire using an RMAP read
register command.

6.8.7 Read from Mailbox
Reading from a mailbox is similar to writing multiple data to a register or
FIFO. The read is done referencing a mailbox address with the Read Address.
An example RMAP command for reading from a mailbox is given in Table 6-6.

 ECSS-E-50-11 Draft F
 4th December 2006

45

Table 6-6 Example RMAP command reading from
mailbox

Field No. Bytes Value

Destination Path Address 0 -

Destination Logical Address 1 0x54

Protocol Identifier 1 0x01

Packet Type 01b
Command 1 0010b
Extra Source Path Address Length 00b

Extra Source Path Address 0 -

Destination Key 1 0x88

Source Logical Address 1 0x76

Transaction Identifier 2 0x00 0x07

Extended Read Address 1 0x01

Read Address 4 0x00 0x00 0x00 0x01

Data Length 3 0x00 0x00 0x10

Header CRC 1 0x08

TOTAL 16

In this example source 0x76 is requesting to read 16 bytes from mailbox one
in destination 0x54. If the referenced mailbox contains data and the
command is acceptable, then the contents of the mailbox is returned to the
source node in the reply packet. If the mailbox does not have the full amount
of data requested then the Data Length field in the reply would be set to the
amount of data that was in the mailbox and only this amount of data would
be returned in the reply.
Note that mailboxes may, if required by the application, be bi-directional i.e.
able to accept both read and write commands. This permits one node to write
data into a mailbox in another node, which is subsequently read by a third
node.

6.8.8 Repeating Transaction ID
If an acknowledgement to a write command fails to be received then it is
possible that the command was received and executed by the destination, but
the acknowledgement failed to get through successfully. If writing to a
command register or to a FIFO it may be important that the same
information is not written a second time. The source user application may
send the same command again using the same transaction identifier. The
destination user application may then use this repeated transaction
identifier to prevent writing the same information to the command register or
FIFO.

ECSS-E-50-11 Draft F
4th December 2006

46

6.8.9 Event Signalling
RMAP can support event signalling in a simple but effective manner. This
can replace interrupts in a distributed system. An RMAP command can be
sent to a node registering to receive an event signal from the node. When the
event occurs the reply to the source of the RMAP command is sent, signalling
to the source that the event has occurred. A user program may sleep until the
reply wakes up it. Data may be attached to the reply.
Event signalling in a node may be implemented using a register (the Event-
Flag register). Registering to receive an event signal may be done by reading
to the event-flag register. Writing to the event-flag register may cancel the
request.
Bits in the event-flag register may indicate different conditions on an event.
Multiple event-flag registers may be used to register to receive multiple
events.
A single event may be reported to multiple nodes if each of those nodes has
registered to receive the event signal, provided, of course, that the destination
node is designed to handle signalling to multiple nodes.
Care needs to be taken in the system design to avoid high latency. For
example, the maximum packet length used must be kept to a reasonable size
to avoid an event packet having to wait for a long time while a long packet
completes transmission.

 ECSS-E-50-11 Draft F
 4th December 2006

47

6.9 RMAP Command Summary
The RMAP command codes and their meanings are listed in Table 6-7.

Table 6-7 RMAP Command Codes

Bit 5 Bit 4 Bit 3 Bit 2 Command Field

Write/
Read

Verify
Data
Before
Write

Ack Increment
Address

Function

0 0 0 0 Not used

0 0 0 1 Not used

0 0 1 0 Read single address

0 0 1 1 Read incrementing addresses

0 1 0 0 Not used

0 1 0 1 Not used

0 1 1 0 Not used

0 1 1 1 Read-Modify-Write incrementing
addresses

1 0 0 0 Write, single address, don ’t verify
before writing, no acknowledge

1 0 0 1 W rite, in crem en tin g addresses, don ’t
verify before writing, no acknowledge

1 0 1 0 W rite, sin gle address, don ’t verify
before writing, send acknowledge

1 0 1 1 W rite, in crem en tin g addresses, don ’t
verify before writing, send
acknowledge

1 1 0 0 Write, single address, verify before
writing, no acknowledge

1 1 0 1 Write, incrementing addresses, verify
before writing, no acknowledge

1 1 1 0 Write, single address, verify before
writing, send acknowledge

1 1 1 1 Write, incrementing addresses, verify
before writing, send acknowledge

The RMAP Command Codes that are not used will result in an “R M A P
com m an d n ot su pported by n ode” error code bein g retu rn ed to th e sou rce of
the command.

ECSS-E-50-11 Draft F
4th December 2006

48

6.10 RMAP Conformance

6.10.1 Conformance statements
Several SpaceWire RMAP compatible subsets can be identified each of which
implements only a part of the SpaceWire RMAP standard:

 RMAP Write Command

 RMAP Read Command

 RMAP Read-Modify-Write Command

Corresponding subsets of the SpaceWire RMAP standard are defined to which
implementations may claim conformance. The form of the conformance
statement to use is the one given by the appropriate subset definition in the
following subclauses.

An RMAP compliant product may implement one or more of these subsets.

6.10.2 Definition of subsets

6.10.2.1 RMAP Write Command
An implementation of SpaceWire RMAP Write Command shall conform to all of
the requirements given in all subclauses listed in Table 6-8.

NOTE A product meeting this specification may use the
following conformance statement:

This product conforms to the SpaceWire RMAP Write
specification of the ESA SpaceWire Standard (ECSS-E-50-12A
Part 2).

Table 6-8: SpaceWire RMAP Write Command

Relevant clauses or
subclauses

Title

5 Protocol Identifier

6.3 Write Command

6.6 Error Codes

The supplier of the RMAP equipment shall provide a table detailing the write
command characteristics of the RMAP implementation. An example of the
required table is given in Table 6-9.

 ECSS-E-50-11 Draft F
 4th December 2006

49

Table 6-9 Write Command Equipment Characteristics

Write Command

Action Supported/

Not Supported

Maximum data
length (bytes)

Non-aligned
access accepted

8-bit write NS - -

16-bit write NS - -

32-bit write S 12 No

64-bit write NS - -

Verified write S 4 No

Word or byte address 32-bit word aligned

Accepted logical addresses 0xFE at power-on

0x42 after initialisation

Accepted destination keys 0x20

Accepted address ranges 0x00 0000 0000 – 0x00 0000 001C

Address incrementation Incrementing address only

6.10.2.2 RMAP Read Command
An implementation of SpaceWire RMAP Read Command shall conform to all of
the requirements given in all subclauses listed in Table 6-10.

NOTE A product meeting this specification may use the
following conformance statement:

This product conforms to the SpaceWire RMAP Read Command
specification of the ESA SpaceWire Standard (ECSS-E-50-12A
Part 2).

Table 6-10: SpaceWire RMAP Read Command

Relevant clauses
or subclauses

Title

5 Protocol Identifier

6.4 Read Command

6.6 Error Codes

The supplier of the RMAP equipment shall provide a table detailing the read
command characteristics of the RMAP implementation. An example of the
required table is given in Table 6-11.

_Ref111275538

ECSS-E-50-11 Draft F
4th December 2006

50

Table 6-11 Read Command Equipment Characteristics

Read Command

Action Supported/

Not Supported

Maximum data
length (bytes)

Non-aligned
access accepted

8-bit read NS - -

16-bit read NS - -

32-bit read S 12 No

64-bit read NS - -

Word or byte address 32-bit word aligned

Accepted logical addresses 0xFE at power-on

0x42 after initialisation

Accepted destination keys 0x20

Accepted address ranges 0x00 0000 0000 – 0x00 0000 001C

0x00 0000 0020 – 0x00 0000 003C

Address incrementation Incrementing address only

6.10.2.3 RMAP Read-Modify-Write Command
An implementation of SpaceWire RMAP Read-Modify-Write Command shall
conform to all of the requirements given in all subclauses listed in Table 6-12.

NOTE A product meeting this specification may use the
following conformance statement:

This product conforms to the SpaceWire RMAP Read-Modify-
Write specification of the ESA SpaceWire Standard (ECSS-E-50-
12A Part 2).

Table 6-12: SpaceWire RMAP Read-Modify-Write
Command

Relevant clauses
or subclauses

Title

5 Protocol Identifier

6.5 Read-Modify-Write Command

6.6 Error Codes

The supplier of the RMAP equipment shall provide a table detailing the
characteristics of the RMAP implementation. An example of the required table is
given in Table 6-13.

_Ref111275517

 ECSS-E-50-11 Draft F
 4th December 2006

51

Table 6-13 Read-Modify-Write Command Equipment
Characteristics

Read-Modify-Write Command

Action Supported/

Not Supported

Maximum data
length (bytes)

Non-aligned
access accepted

8-bit read-modify-write NS - -

16-bit read-modify-write NS - -

32-bit read-modify-write S 4 No

64-bit read-modify-write NS - -

Word or byte address 32-bit word aligned

Accepted logical addresses 0xFE at power-on

0x42 after initialisation

Accepted destination keys 0x20

Accepted address ranges 0x00 0000 0000 – 0x00 0000 001C

ECSS-E-50-11 Draft F
4th December 2006

52

6.11 Annex A RMAP CRC Implementation(informative)
In this annex example implementations of the CRC used by RMAP are
provide in VHDL and C-code.

6.11.1 VHDL implementation of RMAP CRC
--
-- Compute the next value of the CRC register dependent
-- on the next message bit
-- Parameters
-- CRCREG: Current value of the CRC register.
-- I: Next message bit.
--
function NextCRCVal(
 CRCREG : STD_LOGIC_VECTOR;
 I : STD_LOGIC)
 return STD_LOGIC_VECTOR is
 variable newcrc : STD_LOGIC_VECTOR(7 downto 0);
begin
 -- calculate the newcrc
 newcrc(0) := I xor CRCREG(7);
 newcrc(1) := I xor CRCREG(7) xor CRCREG(0);
 newcrc(2) := I xor CRCREG(7) xor CRCREG(1);
 newcrc(3) := CRCREG(2);
 newcrc(4) := CRCREG(3);
 newcrc(5) := CRCREG(4);
 newcrc(6) := CRCREG(5);
 newcrc(7) := CRCREG(6);
 return newcrc;
end function NextCRCVal;
-- type required for the CRC generation
type CrcValues_T is array (0 to 8) of STD_LOGIC_VECTOR(7
downto 0);

--
-- update the next value of the CRC register with
-- a new input byte. Note the
-- convention used is INBYTE(0) is the next serial
-- bit and so on.
-- parameters:
-- CRCREG - The CRC register value which is updated
-- INBYTE - The next byte to be calculated
--
procedure UpdateCRC(
 signal CRCREG : inout STD_LOGIC_VECTOR(7 downto 0);
 signal INBYTE : in STD_LOGIC_VECTOR(7 downto 0)) is

 variable tmp : CrcValues_T;
begin
 tmp(0) := CRCREG;
 -- generate the logic for the next CRCREG byte using a
loop
 for i in 1 to 8 loop
 tmp(i) := NextCRCVal(tmp(i-1), INBYTE(i-1));
 end loop;
 -- tmp 8 is the final value
 CRCREG <= tmp(8);
end procedure UpdateCRC;

 ECSS-E-50-11 Draft F
 4th December 2006

53

6.11.2 C-code implementation of RMAP CRC
/* Types used when calculating the CRC */
typedef unsigned char U8;
typedef unsigned char *PU8;
typedef unsigned long U32;
typedef void *PVOID;

/* The table used to calculate the CRC for a buffer */
U8 RMAP_CRCTable[] = {
 0x00, 0x91, 0xe3, 0x72, 0x07, 0x96, 0xe4, 0x75,
 0x0e, 0x9f, 0xed, 0x7c, 0x09, 0x98, 0xea, 0x7b,
 0x1c, 0x8d, 0xff, 0x6e, 0x1b, 0x8a, 0xf8, 0x69,
 0x12, 0x83, 0xf1, 0x60, 0x15, 0x84, 0xf6, 0x67,
 0x38, 0xa9, 0xdb, 0x4a, 0x3f, 0xae, 0xdc, 0x4d,
 0x36, 0xa7, 0xd5, 0x44, 0x31, 0xa0, 0xd2, 0x43,
 0x24, 0xb5, 0xc7, 0x56, 0x23, 0xb2, 0xc0, 0x51,
 0x2a, 0xbb, 0xc9, 0x58, 0x2d, 0xbc, 0xce, 0x5f,
 0x70, 0xe1, 0x93, 0x02, 0x77, 0xe6, 0x94, 0x05,
 0x7e, 0xef, 0x9d, 0x0c, 0x79, 0xe8, 0x9a, 0x0b,
 0x6c, 0xfd, 0x8f, 0x1e, 0x6b, 0xfa, 0x88, 0x19,
 0x62, 0xf3, 0x81, 0x10, 0x65, 0xf4, 0x86, 0x17,
 0x48, 0xd9, 0xab, 0x3a, 0x4f, 0xde, 0xac, 0x3d,
 0x46, 0xd7, 0xa5, 0x34, 0x41, 0xd0, 0xa2, 0x33,
 0x54, 0xc5, 0xb7, 0x26, 0x53, 0xc2, 0xb0, 0x21,
 0x5a, 0xcb, 0xb9, 0x28, 0x5d, 0xcc, 0xbe, 0x2f,
 0xe0, 0x71, 0x03, 0x92, 0xe7, 0x76, 0x04, 0x95,
 0xee, 0x7f, 0x0d, 0x9c, 0xe9, 0x78, 0x0a, 0x9b,
 0xfc, 0x6d, 0x1f, 0x8e, 0xfb, 0x6a, 0x18, 0x89,
 0xf2, 0x63, 0x11, 0x80, 0xf5, 0x64, 0x16, 0x87,
 0xd8, 0x49, 0x3b, 0xaa, 0xdf, 0x4e, 0x3c, 0xad,
 0xd6, 0x47, 0x35, 0xa4, 0xd1, 0x40, 0x32, 0xa3,
 0xc4, 0x55, 0x27, 0xb6, 0xc3, 0x52, 0x20, 0xb1,
 0xca, 0x5b, 0x29, 0xb8, 0xcd, 0x5c, 0x2e, 0xbf,
 0x90, 0x01, 0x73, 0xe2, 0x97, 0x06, 0x74, 0xe5,
 0x9e, 0x0f, 0x7d, 0xec, 0x99, 0x08, 0x7a, 0xeb,
 0x8c, 0x1d, 0x6f, 0xfe, 0x8b, 0x1a, 0x68, 0xf9,
 0x82, 0x13, 0x61, 0xf0, 0x85, 0x14, 0x66, 0xf7,
 0xa8, 0x39, 0x4b, 0xda, 0xaf, 0x3e, 0x4c, 0xdd,
 0xa6, 0x37, 0x45, 0xd4, 0xa1, 0x30, 0x42, 0xd3,
 0xb4, 0x25, 0x57, 0xc6, 0xb3, 0x22, 0x50, 0xc1,
 0xba, 0x2b, 0x59, 0xc8, 0xbd, 0x2c, 0x5e, 0xcf,
};

/* Calculate an 8-bit CRC for the given buffer */
U8
RMAP_CalculateCRC(
 PVOID buf,
 U32 len
)
{
 U32 i;
 U8 crc;
 PU8 u8_buf = (PU8)buf;

 /* CRC = 0 */
 crc = 0;

 /* for each byte in the buffer */
 for (i = 0; i < len; i++)
 {
 /* The value of the byte from the buffer is */
 /* XORed with the current CRC value. */
 /* The result is then used to lookup the */
 /* new CRC value from the CRC lookup table */

ECSS-E-50-11 Draft F
4th December 2006

54

 crc = RMAP_CRCTable[crc ^ *u8_buf++];
 }

 /* return the CRC */
 return crc;
}

 ECSS-E-50-11 Draft F
 4th December 2006

55

6.12 List of changes

6.12.1 From draft E to draft F
 Figure 6-23 updated to include replies with data length of zero i.e. 0x00

also allowed in the last data length field. This is a correction to the
figure to make it consistent with the associated text.

 Table 6-1 updated with clarifications to the error code definitions.
Specifically Error Code 2 and 7 have been clarified.

 Additional text has been added to section 6.3.1 Data CRC paragraph,
section 6.4.2 Data CRC paragraph, section 6.5.1 Data/Mask CRC
paragraph and section 6.5.2 Data CRC paragraph. This extra text states
“N ote th at th e data C R C is alw ays presen t. W h en th ere is n o data (data
length is zero) the data CRC is set to 0x00.”

 Clarification has been added to the definition of the Header and Data
CRC in section 6.2 Definitions. The CRC handles data least significant
bit first. The information about the CRC algorithm has been put in a
separate CRC definition paragraph and text has been added that states
The CRC is calculated on the byte stream not the serial bit stream, since
the RMAP protocol operates above the SpaceWire packet level (see
ECSS-E50-12A). The equivalent serial representation takes the least
significant bit of each byte first and does not include data/control or
parity bits, nulls, FCT or other non-data characters. The informative
implementation examples in VHDL and C-code given in section 6.11
(Annex A) have been updated to reflect that the CRC is calculated least-
significant bit first.

 Three CRC test patterns have also been added to section 6.2, CRC
definition paragraph.

 Clarification, in the form of some examples, has been added to the
definition of the Source Path Address in section 6.2 Definitions.

 Section 6.2 Definitions: sentence explaining the order of the definitions
added as the beginning of this section.

 Section 6.1.2 Nomenclature was inserted describing how hexadecimal
and binary numbers are represented.

6.12.2 From draft D to draft E
 Table 6-2 added, in section 6-6, explaining what happened when a

command is received with the reserved bit set (1).
 The action to take if a reply is received with the command reserved bit

set or the Ack bit zero has been defined in section 6-6.
 The action to take when a reply is received at a node not designed to

send commands and receive replies is defined in section 6-6.
 The single address mode for the RMW command has been changed to

not used in Table 6-7.
 T h e n am e for error code 2 h as been ch an ged to “U n u sed R M A P P acket

T ype or C om m an d C ode” as it is th e stan dard th at defin es w hen to
generate this code and not the node implementation.

ECSS-E-50-11 Draft F
4th December 2006

56

 E rror code 10 h as been ch an ged to “R M A P C om m an d n ot im plem en ted
or n ot au th orised.”

 Section 6.8.9 has been added, describing how RMAP can be used to
support event signalling.

 Endian characteristic removed from equipment characteristic tables in
section 6.10. Endian-ness of RMAP is explicit.

 Sequence diagram added for RMW reply data error
 E rror code 6 ch an ged to “C argo too large”, rath er th an “L ate E O P .”
 E rror code 8 n ow reserved rath er th an “L ate E E P .” L ate E E P is n ow

covered by error code 6.
 All unused error codes are reserved.
 Reference to ATM in Header CRC definition removed.
 Clarification added to RMW errors about the situation that occurs when

a RMW command is requested for an area of write protected memory, so
that the read works but the write fails.

 Clarification added to section 6.3.1. The source is only informed of a data
CRC error is the acknowledge bit is set in the write command.

 P aragraph startin g w ith “T h ere are n o tim eou t tim ers” on p. 14 has been
deleted since it repeated text on p.11.

 It was unclear whether the three Data Length bytes in the reply always
should be the same as in the Read Command. The text on p. 43 (6.8.7)
implied that the Data Length in the reply can be less than the Data
Length in the command. A clarification has been added to section 6.4.2.

 The term Reply CRC used in section 6.3.2 has been replace by Header
CRC to be consistent with other sections.

 The definition of Data CRC in section 6.2 has been expanded to include
the value of the Data CRC when the data length is zero.

 T h e u se of th e “G en eral error code” h as been clarified in section 6.6.
 Minor editorial changes

6.12.3 From draft C to draft D
 Commands described for logical addressing first with a description of

the command using path addressing following the command action
description. This is to simplify the overall description of RMAP by
concentrating first on the simpler case of logical addressing and then
expanding this to include path addressing.

 Error code 12 has been added in section 6.6 to cover the detection of an
invalid destination address.

 The order of checking for errors and the error that is to be reported
when there are multiple errors has been added to section 6.6.

 T h e error code to sen d w h en a “N ot U sed” command code is received has
been added to section 6.9.

 Conformance statements have been added in section 6.10. This section is
now referenced in section 6-7.

 An informative annex (section 6.11) has been added providing possible
implementations of the RMAP CRC in VHDL and C-code.

 ECSS-E-50-11 Draft F
 4th December 2006

57

 Minor editorial changes.

	Remote memory access protocol (normative)
	General
	Purpose
	RMAP Operations
	Write commands
	Read commands
	Read-modify-write

	Nomenclature
	Guide to clause 6

	Definitions
	Write Command
	Write command format (logical addressing)
	Write reply format (logical addressing)
	Write command format (path addressing)
	Write reply format (path addressing)
	Write action
	Write errors
	Write command parameters

	Read Command
	Read command format (logical addressing)
	Read reply format (logical addressing)
	Read command format (path addressing)
	Read reply format (path addressing)
	Read action
	Read errors
	Read command parameters

	Read-Modify-Write Command
	Read-modify-write command format (logical addressing)
	Read-modify-write reply format (logical addressing)
	Read-modify-write command format (path addressing)
	Read-modify-write reply format (path addressing)
	Read-modify-write action
	Read-modify-write errors
	Read-modify-write command parameters

	Error codes
	Partial Implementation of RMAP
	RMAP Use Cases (informative)
	Write to memory
	Read from memory
	Reading and Writing to Registers
	Write to FIFO
	Read from FIFO
	Write to Mailbox
	Read from Mailbox
	Repeating Transaction ID
	Event Signalling

	RMAP Command Summary
	RMAP Conformance
	Conformance statements
	Definition of subsets
	RMAP Write Command
	RMAP Read Command
	RMAP Read-Modify-Write Command

	Annex A RMAP CRC Implementation(informative)
	VHDL implementation of RMAP CRC
	C-code implementation of RMAP CRC

	List of changes
	From draft E to draft F
	From draft D to draft E
	From draft C to draft D

