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Abstract—SpaceWire, a recent ESA standard, is gaining 
popularity because of its simple circuitry, low power 
consumption, and high-link speed.  However network 
management on SpaceWire networks is hampered by the 
lack of a link-layer broadcast mechanism which is required 
for services such as the Address Resolution Protocol (ARP) 
and the Dynamic Host Configuration Protocol (DHCP).  
Currently, address resolution and host IP assignments 
require manual configuration.  This paper describes a link-
layer broadcast service and encapsulation service for 
SpaceWire that is implemented in the host node software 
drivers and requires no change to routers or host node 
interface hardware. We believe this work will help move 
SpaceWire towards a future of Plug And Play networks, 
decreasing the cost and time required to develop and 
integrate space systems.12 
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1. AUTOMATIC CONFIGURATION OF SPACEWIRE  

SpaceWire was introduced as a high-speed (10-400Mbps), 
low-power, and low-cost network for spacecraft.  It is in use 
on several current and future space missions from NASA, 
the European Space Agency (ESA), the Japanese Space 
Agency (JAXA), and the Russian Space Agency.  These 
missions include the Geostationary Environmental Satellite 
Program (GOES-R), the James Webb Space Telescope, and 
the Lunar Reconnaissance Orbiter [5].   

While most current applications of SpaceWire support 
statically configured networks, it is easy to envision a future 
where it would prove advantageous to use SpaceWire in a 
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dynamically configured environment.  For example, it may 
be suitable for manned missions, such as NASA’s Crew 
Exploration Vehicle (CEV).  Introducing the human 
element introduces the potential for the addition or removal 
of devices from the network.  Another possible scenario 
would be coordinated collaborative measurements between 
SpaceWire-based Science Instruments on multiple 
spacecraft as they move through orbits, creating dynamic, 
short-duration networks.  SpaceWire has also been 
suggested for some terrestrial applications, such as 
streaming video.  Users of such applications would 
undoubtedly want to make use of automatic network 
configuration support. 

To achieve the goal of automatic network configuration, we 
offer a plan which leverages support from well established 
existing standards, including Address Resolution Protocol 
(ARP) and Dynamic Host Configuration Protocol (DHCP) 
and introduces a dynamic routing protocol.  None of these 
technologies are currently supported directly by SpaceWire 
networks as defined by the standard (ESA specification 
ECSS-E-50-12A) [4].  One element missing from 
SpaceWire that would help support such standard protocols 
is a link-layer broadcast.  ARP utilizes broadcasts to 
discover the mapping between an IP (network-layer) 
address and a unique hardware (link-layer) address.  DHCP 
clients use broadcast to discover the DHCP server that 
dynamically assigns a unique network address.  Routing 
protocols for wired networks typically rely on router-to-
router communication, rather than link-layer broadcast 
(although broadcasts are fundamental to ad hoc routing 
protocols).   SpaceWire differs from most wired networks in 
that the host nodes must specify the packet destination 
address and, if regions are used, must also specify the 
address of the appropriate regional gateway. Broadcast 
could be used to disseminate the addresses of regional 
gateways to the host nodes.  While this method does not 
address dynamic updating of the router forwarding tables, it 
does provide a simple “first step” that dynamically 
configures route information on host nodes.     

This paper presents three central concepts.  The first 
concept is that of a unique address for a SpaceWire host.  
The SpaceWire standard specifies that hosts may be 
assigned a logical address (LA) which is unique within a 
region.  However network-wide uniqueness is not 
guaranteed since, a LA may be reused by another host in a 
different region.  Regions are inferred from information in 
the router forwarding tables and do not have explicit 
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identifiers.  In our approach, each region is explicitly 
assigned a unique region identifier (RID).  We combine the 
RID with the host node LA to form a host address that is 
unique across the entire network.  A unique address is 
required to support a standard ARP protocol [9].  

The second concept we introduce is that of a link-layer 
broadcast mechanism.  An earlier version of our broadcast 
protocol was introduced at the 2006 Space Internetworking 
Workshop [3].  Implementing link-layer broadcast entirely 
in the host nodes allows the use of ARP, DHCP, and other 
configuration protocols without modification to existing 
Commercial-Off-the-Shelf (COTS) SpaceWire routers or 
host interface hardware.  The broadcast algorithm conforms 
to the SpaceWire standard [4], adding only the concept of 
the region identifier.   

The third contribution of this paper is a method to 
dynamically and automatically update route information on 
host nodes using the link-layer broadcast mechanism.  Our 
method broadcasts regional gateway update messages to all 
hosts that contain the logical addresses of gateways between 
each region.  To send a SpaceWire message, a host node 
need only add the logical gateway address(es) and the 
destination’s logical address.    Hosts do not need to know 
network topology or path information.  This reduces the 
problem of route discovery to maintaining router 
forwarding tables.       

Our approach to unique address formation, broadcast, and 
dissemination of routing information to hosts can be 
confined to software on the host nodes, and in particular to 
SpaceWire interface drivers.  No changes are required to the 
SpaceWire specification, to SpaceWire routers, nor to host 
interface hardware.   

While extending the breadth of SpaceWire network 
services, it is important to remain compatible with the 
established SpaceWire standard and to support existing 
hardware.  This improves interoperability and encourages 
acceptance. The broadcast service and routing protocol 
described in this paper are designed to be entirely 
compatible with the SpaceWire standard.  Although last 
year we presented a packet encapsulation service [2] to 
provide a mechanism for identifying packet application or 
stack association, we have chosen to instead implement the 
encapsulation service more recently introduced by the 
SpaceWire Working Group [6].  The improvements 
presented in this paper are designed to support multiple 
higher-level network stacks (IPv4, IPv6, SCPS-NP) as well 
as custom applications that directly interface to the driver. 

2. SPACEWIRE NETWORK LAYER 

SpaceWire packets are addressed using a series of bytes 
prepended to the data packet.  An address in the range 

[1..31] is known as a “path address” and specifies which 
physical port the packet should travel through.  An address 
in the range [32..255] is known as a “logical address.”  
When a SpaceWire router receives a packet with a logical 
address, it consults the routing table to find the next packet 
destination.  The logical addresses of 254 and 255 are 
reserved.  For more detail on SpaceWire addressing, refer to 
[4]. 

SpaceWire routing is performed by configuration of routing 
tables stored on the routers.  The standard method for a 
router table update is a manual configuration.  Routers may 
be configured to delete the first byte of the address as the 
packet is forwarded, a technique known as header deletion.  
Header deletion is commonly applied to path addressing, to 
reveal the next physical port the message will be directed to.  

Since SpaceWire uses a single byte for logical addresses, 
there are only 222 unique logical addresses available.  To 
allow for larger networks, or to support the re-use of logical 
addresses, SpaceWire regions were introduced.  Each region 
is guaranteed to have a non-repeating set of logical 
addresses.   

Regional Gateways 

When a packet needs to travel between SpaceWire regions, 
a special logical address known as a gateway is used.  
Nodes in different regions typically use different gateways 
to reach the same destination.  This requires that each host 
node know the gateway as well as the logical address to 
each potential destination.   Routers are configured to 
perform header deletion on gateway addresses. 
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Figure 1. SpaceWire Gateway Addressing 
 
Figure 1 shows an example of gateway addressing.  To 
direct a packet from Region 1, Node 2 to Region 2, Node 5, 
the gateway address “67” is first used to move to the new 
region.  When the packet is directed across the region 
boundary, the gateway address is stripped off, revealing the 
destination logical address of “52”. 



 3

3. SPACEWIRE MESSAGES 

Packets are designed to require a minimal amount of 
overhead.  The advantage of very small packet header size 
is a reduction in the operating cost of missions designed 
with custom packet handling algorithms.  The packet header 
is only required to contain the destination (Figure 2).    

The SpaceWire packet destination is specified as a series of 
bytes.  Each byte may either specify the next hop in the 
network by designating the router output port (path 
addressing) or it may specify a reference destination that 
will be translated to an output port through a routing table 
(logical addressing).  The series of bytes in the address is 
followed by the packet data.   

Address Data
 

Figure 2. SpaceWire Message Format 
 
A recently proposed addition to the SpaceWire standard is 
the definition of a protocol identifier [6].  The protocol 
identifier (PID) indicates the network stack or application 
process on the destination node.  The PID may be read from 
the second byte of the packet when it arrives at its 
destination.  The PID values between 1 and 239 are 
reserved for assignment by the SpaceWire working group.  
Values from 240 to 255 are used for experimental protocols 
[7].  If the network makes use of the protocol identifier, the 
packet must retain a leading address byte.  If the system is 
using path addressing where the routers will apply header 
deletion to the address bytes, the protocol identifier 
specification states that the first byte will be a dummy 
logical address of 254 (see Figure 3). 

Packet with Path Address (PA)

Packet with Logical Address (LA)

DataLA PID

DataPA PA
Dummy 

LA
PID

 

Figure 3. SpaceWire Addressing with Protocol ID 

4. SPACEWIRE BROADCAST PROTOCOL 

Broadcast loops occur when a broadcast packet is sent back 
to its original destination and then sent out again, creating 
an infinite loop or broadcast storm.  The SpaceWire 
standard sidesteps this problem by not specifying a general 
broadcast method.  In our proposal, we will introduce a few 
simple implementation rules to prevent this condition. 

The SpaceWire broadcast protocol we introduce here is 
built upon the SpaceWire standard.  It may be implemented 
in software as part of the network driver on the host nodes.  
It uses the concept of a designated “broadcast server” to 
distribute messages to nodes on the local router or to the 
entire network. 
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Figure 4. Broadcast Servers and SpaceWire Subnets 
 
SpaceWire Subnet 

We define the concept of a SpaceWire Subnet to indicate all 
nodes attached to the local router.   

Broadcast Server 

One host node in each SpaceWire subnet is designated as a 
broadcast server (Figure 4).  This is envisioned as a 
secondary role of the host node; a broadcast server need not 
be a dedicated system. 

To broadcast a message throughout the SpaceWire network, 
the host node sends a broadcast request to its broadcast 
server.  The broadcast server then sends the message to all 
other broadcast servers with each one distributing the 
message to the nodes on their subnet (e.g., all nodes 
connected to the local router). 

Figure 5 shows the format of a broadcast message.  The 
proposed broadcast protocol identifier is 254.  The PID is 
followed by the 1-byte broadcast protocol header and the 
message payload.  The broadcast header is either a zero or 
one, identifying whether the server is to distribute the 
message to subnet nodes (Type 0) or to other broadcast 
servers (Type 1).  
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Figure 5. Broadcast Message Format 
 
Messages from the stack 

When the SpaceWire driver receives a broadcast message 
for transmission from a local application or from its 
network stack, it distributes the message as a Type 0 
message (Figure 6) to all ports on the local router, which 
may include its own port.  The SpaceWire driver recognizes 
broadcast messages from IP (Internet Protocol) or other 
network stacks because it contains a special network 
address to indicate broadcast.  For example, IPv4 uses 
192.168.255.255 to indicate a link-layer broadcast on the 
192.168.0/16 network. 

Data254 0

Broadcast Header

Broadcast PID

 , n router ports1..n
(PA) 254

Dummy LA  

Figure 6. Type 0 Broadcast Message 
 

Receipt of a Type 0 Message 

When a broadcast server receives a Type 0 message from 
one of its host nodes, the server changes the broadcast 
header byte from a value of zero to one and distributes the 
Type 1 message (Figure 7) to all other broadcast servers.  
Figure 8 shows the broadcast server in Subnet 1 sending a 
Type 1 message to all other broadcast servers (in this 
example, there is only one other broadcast server to send 
to). 
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Figure 7. Type 1 Broadcast Message 
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Figure 8. Server Broadcast, Type 1 Message 

 
Receipt of a Type 1 Message 

When a broadcast server receives a Type 1 message from 
another broadcast server, it changes the broadcast header 
byte from a value of one to zero and distributes the Type 0 
message to all other ports on the local router. Figure 9 
shows the broadcast server in Subnet 1 sending the Type 0 
message. 
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Figure 9. Subnet Broadcast, "Type 0" Message 

 
Router configuration to prevent loops 

Messages generated from the broadcast service are not sent 
back to the broadcast server because this would cause a 
broadcast loop, an infinite cycle of broadcast messages.  In 
addition, by configuring the routers to drop messages with 
the logical address of 254 (Figure 10), we prevent local 
broadcasts from propagating to other routers, blocking a 
secondary avenue for broadcast loops.  The manner in 
which the logical address 254 is used by the protocol 
identifier specification does not preclude having the router 
drop a packet which starts with 254. 

In the following example, the local router is connected to a 
second router on port four.  When the packet is sent out of 
port four, the path address of “<4>” is stripped (header 
deletion) and the leading byte of the packet is now “<254>”. 
 A router receiving this logical address is configured to drop 
the packet.  A node receiving this address understands that 
this is a dummy logical address associated with a 
SpaceWire path address and processes the packet. 
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Figure 10. Router Blocking of Address 254 

5. BROADCAST AND HIGHER-LEVEL SERVICES 

The SpaceWire Standards body is currently investigating 
methods for supporting “Plug And Play,” or the automatic 
recognition of devices when they are added to the network.  
The current proposal suggests that a device should 
announce itself when it is attached to the network [8].  One 
idea for this announcement is based on a router-centric 
protocol, where the routers initiate the announcement of the 
new device.  Unfortunately, this would not be compatible 
with existing SpaceWire routers.  If the device was able to 
initiate its own announcement through our broadcast 
protocol, “Plug And Play” could work with existing router 
hardware.  

As a first step towards Plug And Play, we propose an 
automated method for routing configuration built on our 
broadcast protocol.  In this section, we give three examples 
of how broadcast can support automatic network 
configuration and management. 

Standard ARP 

We define a SpaceWire hardware address based on a 
device’s logical address and region.  To create this 
SpaceWire hardware address, we define a region identifier 
to identify particular SpaceWire regions.  Each region has 
unique identifying number between 0 and 255.  The 
combination of the region identifier and the device’s logical 
address define a unique SpaceWire hardware address. 

When a device wishes to send a packet to a transport-layer 
address (such as an IP address), it must translate this 
address to a unique hardware address.  Because we now 
have defined a unique hardware address and have built a 

link-layer broadcast service, this translation can be 
performed using standard ARP software.  This is a major 
improvement in automatic configuration for SpaceWire 
networks. 

Gateway Routing and Host Updates 

If logical addresses are used and there is only one region, 
then routing is the responsibility of the routers; no route 
information need be maintained on the host nodes.  
However, when regional addressing is used, the host nodes 
must maintain gateway addresses to each region.  It is far 
more cumbersome to maintain route information on host 
nodes than on routers.  Currently this requires manual 
configuration and maintenance.  To alleviate this problem, 
we have designed a method that uses our broadcast 
mechanism to automatically disseminate gateway routing 
updates to the host nodes.   

In our approach, each host node maintains a table that gives 
the list of gateway addresses needed to reach a region from 
that node.  The network driver forms the destination address 
by prepending the appropriate gateway addresses to the 
destination’s LA.   
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Router 
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Figure 11. Region to Gateway Translation 
 

Figure 11 shows an example of how gateway tables are 
used.  To send a packet from Region 1 to Region 2, the 
gateway “67” would be used.  To send a packet from 
Region 1 to Region 3, the gateways “67” and “72” would 
both be prepended before the destination logical address. 

The benefit of maintaining regional gateway tables on the 
hosts is that the tables need only be updated when there are 
changes to regional topology or gateway information.  
Adding a node to a region or changing node logical 
addresses does not require any change to the gateway tables. 
 It is likely that nodes would be added or removed from 
regions more frequently than regions would be added or 
removed from the network.   

To make this approach more adaptable than the traditional 
SpaceWire routing tables, it is important to reduce the 
maintenance overhead for the gateway tables.  Because they 
are maintained on the host nodes and may differ for nodes 
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in different regions, this is not a trivial question.  The 
solution lies in using our broadcast service.  Gateways 
tables can be dynamically and automatically managed by 
broadcasting update information whenever a change occurs. 
 In this way, manual configuration of routing information 
on host nodes can be eliminated.  This is an important step 
towards building Plug And Play networks on a regional 
level.   

 Standard DHCP 

With our broadcast service, SpaceWire networks under IP 
stacks can utilize standard DHCP software.  DHCP 
dynamically assigns a unique network-layer (e.g., IP) 
address to a device.  DHCP is used on most terrestrial IP 
networks and has potential for reducing development costs 
for space systems. 

The addition of ARP, DHCP, and dynamic routing made 
possible by our SpaceWire broadcast service would provide 
the building blocks for basic Plug And Play network 
configuration. 

6. IP OVER SPACEWIRE 

Standard IP may be embedded into SpaceWire packets.  A 
SpaceWire driver receiving a packet with a protocol 
identifier for IP will strip off the SpaceWire headers and 
forward the embedded IP message to the IP stack.  In this 
way, many of the standard services, such as ARP, may be 
automatically supported once the embedded data packet has 
been extracted.  Since IP is the backbone of most of the 
commonly used internet services, a few additions to 
SpaceWire, such as broadcast, will enable IP applications to 
run seamlessly over SpaceWire.  

7. BROADCAST PROTOCOL DEVELOPMENT 

To demonstrate the broadcast protocol we are developing a 
protocol simulation and network driver under a Southwest 
Research Institute® (SwRI®) internal research project.  The 
driver will support the SpaceWire Link Interface Module 
(SLIM) 3U CompactPCI network card developed at SwRI® 
[1].  It will implement the broadcast protocol described in 
this paper.  The simulation will be used to validate the 
protocol and benchmark operation for large networks with 
various topologies.  Both the simulation and the driver will 
use the same core protocol primitives. 

Driver Development 

Since the low-level interface details of the SwRI® SLIM 
were readily available, we chose this card as the basis for 
our driver development.  The driver is based on embedded 
Linux with a 2.6 kernel.  The driver will implement the 
SpaceWire packet encapsulation and broadcast service.  The 

encapsulation service will initially be designed to recognize 
IP, but could easily be expanded to handle other high-level 
protocols.   

When messages arrive on the network interface, they are 
inspected by the encapsulation service to determine their 
protocol type.  The messages are then passed to the 
appropriate network stack hooks.  For example, IP messages 
are passed to the IP stack for processing, or raw messages 
may be passed straight to a custom application for 
processing.  On a broadcast server, the driver would pass 
broadcast messages to the broadcast service to be processed 
by the SpaceWire broadcast protocol.  As described in 
Section 4, if a broadcast message is a Type 0 message, a 
Type 1 message will be sent to all other broadcast servers.   
The message will also be passed up the stack to the 
encapsulation service for further processing.  If the message 
is a Type 1 message, a Type 0 message will be sent to all 
other ports on the server’s local router. 

Messages targeted for transmission to the network are 
passed to the encapsulation service to be tagged with the 
appropriate SpaceWire protocol identifier.  If the 
encapsulation service detects that the outgoing message is a 
broadcast, the message will be passed to the broadcast 
service.  Once in the broadcast service, a list of SpaceWire 
path addresses will be generated to target the message as a 
Type 0 broadcast to all local router ports.  

The driver may be configured on startup using a 
configuration file or through ioctl() (input/output control) 
calls from an application.  The driver configuration 
information includes a list of the SpaceWire hardware 
addresses for the broadcast servers and an initial list of 
known regions and their associated gateways.    

SpaceWire Demonstration Network 

Our test network uses three SwRI® SpaceWire SLIM cards 
as well as a COTS SpaceWire link interface to illustrate 
device interoperability.  We are using a 4-Links SpaceWire-
PCI network card and two eight-port STAR-Dundee 
SpaceWire routers [10].  
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STAR-
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Router

Subnet 2
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Figure 12. SpaceWire Demonstration Network 
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Using the network configuration shown in Figure 12, we 
can demonstrate broadcast message propagation over a 
simple network, over a multi-region topology, and between 
two adjoining routers.  This not only demonstrates the 
broadcast action of the protocol, but it also demonstrates 
that the protocol does not produce broadcast loops. 

Simulation 

To further exercise our SpaceWire protocol implementation, 
we are developing a network simulation.  The simulator 
uses the core encapsulation and broadcast functions from 
the SLIM driver to process packets.  A wide range of 
topologies may be specified through configuration files.  
The simulated devices have the ability to act as routers, 
broadcast servers, or ordinary host nodes.  Each device 
specified in the network topology generates an individual 
process.  The processes are linked by socketpairs.  Each 
socketpair represents a physical network link between 
devices on the network.  Configuration files are also used to 
designate scheduling and data content of message 
transmission.  The standard configuration files used by the 
SpaceWire driver are also used for the simulation.   

We are testing a number of topologies.  We will evaluate 
the transmission of messages from broadcast servers as well 
as ordinary network nodes.  Statistics quantifying the 
overhead required to perform the broadcast to all nodes will 
be tabulated.  Information about router loading will also be 
collected.  Preliminary results on three network 
configurations are shown below.   

The first network is a simple, single router topology with 
eight host nodes attached (Figure 13).  Broadcast messages 
are generated by any of the host nodes and propagated to all 
the other nodes by the SpaceWire broadcast protocol.  In 
this example, the end node originating the message would 
send a Type 0 message to all other ports on the router.  In 
this topology, a broadcast server is not required, since there 
is only one subnet.  The network driver performs the same 
broadcast protocol operations on each node.  The existence 
of the broadcast server here provides the capability to 
support the future attachment of other subnets.    

Router 

Broadcast
Server

N2 N8N3 N4 N5 N6 N7N1

 

Figure 13. Single Router Simulation Topology 
 

To evaluate broadcast server interactions across multiple 
subnets, a larger, eight-router, forty-eight host node 
topology was evaluated (Figure 14).  Each router has a 
broadcast server.  Any of the six nodes attached to a router 
may be designated as the broadcast server.  Messages 
originate from a host node as a Type 0 broadcast sent to all 
the ports on the local router using path addressing.  All 
routers are configured to drop messages starting with the 
dummy logical address of 254.  Since the path address is 
stripped off by the local subnet router, the first byte of any 
Type 0 message received by a router in the adjoining subnet 
will have the value of 254, causing the message to be 
dropped.  This mechanism prevents broadcast loops.  When 
the subnet broadcast server receives a Type 0 message, it 
sends a Type 1 messages to all other broadcast servers on 
the network.  The other broadcast servers issue Type 0 
messages to their subnets, completing the broadcast to all 
host nodes. 
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Figure 14. Multiple Router Simulator Topology 
 

The third topology uses redundant router linking, a common 
technique in space missions (Figure 15).  Four routers with 
six host nodes each are connected by multiple paths for 
alternate data routes in case of link failure.  This network 
contains physical loops, providing a good illustration of the 
loop-free nature of our SpaceWire broadcast protocol.    
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Figure 15. Redundant Router Simulator Topology 
 
Broadcasts for the redundant router topology occur in the 
same way as those in the multiple-router topology.  Type 0 
messages are sent from the broadcasting host node to the 
rest of the local subnet and the broadcast servers distribute 
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the messages across the remainder of the network.   
 
The preliminary simulation results show that the SpaceWire 
broadcast protocol is performing a complete and efficient 
distribution of messages across the network.  The messages 
transmitted contained one byte of data, four or five header 
bytes and an end-of-packet marker (EOP).  While a one 
byte payload is not a typical packet size, it is sufficient to 
demonstrate that data will be routed correctly across the 
network to provide a broadcast.  The header length varies 
because during path addressing (Type 0 messages) the extra 
dummy logical address byte must be included.  The address 
bytes are followed by the broadcast protocol ID and the one 
byte broadcast type.  Following the broadcast header 
information, an additional protocol ID byte is used to 
indicate the type of information imbedded in the broadcast.  
 

 Single Redundant Multiple 
Host Nodes 8 24 48 

Total Messages Read 7 23 47 
Total Bytes Read 42 138 282 

Figure 16. Simulation Host Node Statistics 
 
In each topology tested, Figure 16 shows that all host nodes 
(N-1) received exactly one copy of the broadcast message.  
In the simulation, the nodes know which router ports they 
are attached to; the node that initiates the broadcast does not 
send a message to itself.    There were no host nodes missed 
in the distribution and no extra message copies were 
delivered. 
 
An additional benefit of the broadcast protocol is that it 
distributes the work load to all the routers in the network.  If 
a broadcast is performed by sequential unicast, the router on 
the subnet initiating the message has the burden of 
forwarding one message for every device on the network.  
The broadcast protocol requires each router to forward one 
message to each of its own nodes, with only a few 
additional messages required to contact broadcast servers 
located in other subnets.  Router traffic statistics (Figure 17) 
show that the router load is well balanced across the 
network.   
   

 Single Redundant Multiple 
Routers 1 4 8 

Total Writes 7 34 83 
Writes Per 

Router 7 10,9,7,8 13,14,12,11,10,9,8,6 

Avg Writes 7 8.5 10.375 
Figure 17. Simulation Router Statistics 

 
The router data also shows that the number of messages 
encountered by the router (Figure 17) is greater than the 
number of messages received by the host nodes (Figure 16). 
 This is due in some cases to router ports which drop 

messages because there is no device attached.  It is more 
commonly due to Type 0 messages received from adjoining 
routers which are dropped intentionally (through 
configuration) to prevent broadcast loops and to the action 
of forwarding Type 1 messages to broadcast servers on 
other subnets. 
 
The simulation results indicate that the broadcast protocol is 
functioning as designed and is ready to be integrated into 
the driver.  It distributes messages across the network using 
only a small number of extra control packets.  The message 
overhead of two bytes required for the broadcast is a small 
addition to the packet size.  Further analysis and comparison 
to other broadcast methods will be performed in the future. 

8. RELATED WORK 

Non-broadcast ARP 

At the 2006 IEEE Aerospace conference, we introduced the 
idea of non-broadcast ARP [2].  During the early ARP 
implementation, it became clear that a general link-layer 
broadcast ARP would be more useful.  A broadcast protocol 
would be able to support the standard ARP, as well as being 
generally available for use by other services such as DHCP 
or for application-layer broadcast. 

SpaceWire Plug And Play Working Group 

The SpaceWire Plug And Play Working Group has 
proposed a router-based approach to the Plug And Play 
detection of devices [8].  The routers would store addresses 
to all known devices on the network and broadcast 
configuration or topology state changes by sequential 
unicast.  Using our SpaceWire broadcast protocol instead 
could reduce the workload of routers when delivering these 
messages across the network.  Having support for standard 
broadcast dependent services could also aid in the 
automated configuration of Plug And Play devices. 

9. CONCLUSIONS 

In this paper, we have introduced a straightforward, 
software-based approach to implementing a SpaceWire 
link-layer broadcast.  We have described the protocol, 
driver development and a SpaceWire demonstration 
network.  Preliminary simulation results illustrate that the 
protocol provides a complete, loop-free broadcast. 

The broadcast protocol is compatible with the existing 
SpaceWire standard and existing COTS SpaceWire routers 
and interface hardware.  The broadcast protocol and the 
unique SpaceWire host address, based on the combination 
of logical address and region identifier are necessary to 
support standard IP ARP and DHCP over SpaceWire as 
well as a new concept of regional gateway routing.  By 
providing these additional building blocks to SpaceWire 
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networks, we have taken a step towards supporting more 
industry-standard network applications (such as those based 
on IP) and towards Plug And Play networks over 
SpaceWire.  Continuing research will help to further reduce 
development cost and deployment time of SpaceWire-based 
systems, making SpaceWire a more attractive choice for 
future space missions. 
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