
 1

A Link-Layer Broadcast Service for SpaceWire Networks
Allison Roberts, Sandra G. Dykes, Robert Klar, Christopher C. Mangels

Southwest Research Institute®
6220 Culebra Road

 San Antonio TX 78238-5166
210.522.3248

{allison.roberts, sandra.dykes, robert.klar, christopher.mangels}@swri.org

Abstract—SpaceWire, a recent ESA standard, is gaining
popularity because of its simple circuitry, low power
consumption, and high-link speed. However network
management on SpaceWire networks is hampered by the
lack of a link-layer broadcast mechanism which is required
for services such as the Address Resolution Protocol (ARP)
and the Dynamic Host Configuration Protocol (DHCP).
Currently, address resolution and host IP assignments
require manual configuration. This paper describes a link-
layer broadcast service and encapsulation service for
SpaceWire that is implemented in the host node software
drivers and requires no change to routers or host node
interface hardware. We believe this work will help move
SpaceWire towards a future of Plug And Play networks,
decreasing the cost and time required to develop and
integrate space systems.12

TABLE OF CONTENTS

1. AUTOMATIC CONFIGURATION OF SPACEWIRE ...1
2. SPACEWIRE NETWORK LAYER2
3. SPACEWIRE MESSAGES ..3
4. SPACEWIRE BROADCAST PROTOCOL3
5. BROADCAST AND HIGHER-LEVEL SERVICES5
6. IP OVER SPACEWIRE..6
7. BROADCAST PROTOCOL DEVELOPMENT6
8. RELATED WORK ...8
9. CONCLUSIONS ...8
REFERENCES ...9
BIOGRAPHY ...10
ACKNOWLEDGEMENTS ...10

1. AUTOMATIC CONFIGURATION OF SPACEWIRE

SpaceWire was introduced as a high-speed (10-400Mbps),
low-power, and low-cost network for spacecraft. It is in use
on several current and future space missions from NASA,
the European Space Agency (ESA), the Japanese Space
Agency (JAXA), and the Russian Space Agency. These
missions include the Geostationary Environmental Satellite
Program (GOES-R), the James Webb Space Telescope, and
the Lunar Reconnaissance Orbiter [5].

While most current applications of SpaceWire support
statically configured networks, it is easy to envision a future
where it would prove advantageous to use SpaceWire in a

1
1 1-4244-0525-4/07/$20.00 ©2007 IEEE.
2 IEEEAC paper #1484, Version 4, Updated January 15, 2007

dynamically configured environment. For example, it may
be suitable for manned missions, such as NASA’s Crew
Exploration Vehicle (CEV). Introducing the human
element introduces the potential for the addition or removal
of devices from the network. Another possible scenario
would be coordinated collaborative measurements between
SpaceWire-based Science Instruments on multiple
spacecraft as they move through orbits, creating dynamic,
short-duration networks. SpaceWire has also been
suggested for some terrestrial applications, such as
streaming video. Users of such applications would
undoubtedly want to make use of automatic network
configuration support.

To achieve the goal of automatic network configuration, we
offer a plan which leverages support from well established
existing standards, including Address Resolution Protocol
(ARP) and Dynamic Host Configuration Protocol (DHCP)
and introduces a dynamic routing protocol. None of these
technologies are currently supported directly by SpaceWire
networks as defined by the standard (ESA specification
ECSS-E-50-12A) [4]. One element missing from
SpaceWire that would help support such standard protocols
is a link-layer broadcast. ARP utilizes broadcasts to
discover the mapping between an IP (network-layer)
address and a unique hardware (link-layer) address. DHCP
clients use broadcast to discover the DHCP server that
dynamically assigns a unique network address. Routing
protocols for wired networks typically rely on router-to-
router communication, rather than link-layer broadcast
(although broadcasts are fundamental to ad hoc routing
protocols). SpaceWire differs from most wired networks in
that the host nodes must specify the packet destination
address and, if regions are used, must also specify the
address of the appropriate regional gateway. Broadcast
could be used to disseminate the addresses of regional
gateways to the host nodes. While this method does not
address dynamic updating of the router forwarding tables, it
does provide a simple “first step” that dynamically
configures route information on host nodes.

This paper presents three central concepts. The first
concept is that of a unique address for a SpaceWire host.
The SpaceWire standard specifies that hosts may be
assigned a logical address (LA) which is unique within a
region. However network-wide uniqueness is not
guaranteed since, a LA may be reused by another host in a
different region. Regions are inferred from information in
the router forwarding tables and do not have explicit

 2

identifiers. In our approach, each region is explicitly
assigned a unique region identifier (RID). We combine the
RID with the host node LA to form a host address that is
unique across the entire network. A unique address is
required to support a standard ARP protocol [9].

The second concept we introduce is that of a link-layer
broadcast mechanism. An earlier version of our broadcast
protocol was introduced at the 2006 Space Internetworking
Workshop [3]. Implementing link-layer broadcast entirely
in the host nodes allows the use of ARP, DHCP, and other
configuration protocols without modification to existing
Commercial-Off-the-Shelf (COTS) SpaceWire routers or
host interface hardware. The broadcast algorithm conforms
to the SpaceWire standard [4], adding only the concept of
the region identifier.

The third contribution of this paper is a method to
dynamically and automatically update route information on
host nodes using the link-layer broadcast mechanism. Our
method broadcasts regional gateway update messages to all
hosts that contain the logical addresses of gateways between
each region. To send a SpaceWire message, a host node
need only add the logical gateway address(es) and the
destination’s logical address. Hosts do not need to know
network topology or path information. This reduces the
problem of route discovery to maintaining router
forwarding tables.

Our approach to unique address formation, broadcast, and
dissemination of routing information to hosts can be
confined to software on the host nodes, and in particular to
SpaceWire interface drivers. No changes are required to the
SpaceWire specification, to SpaceWire routers, nor to host
interface hardware.

While extending the breadth of SpaceWire network
services, it is important to remain compatible with the
established SpaceWire standard and to support existing
hardware. This improves interoperability and encourages
acceptance. The broadcast service and routing protocol
described in this paper are designed to be entirely
compatible with the SpaceWire standard. Although last
year we presented a packet encapsulation service [2] to
provide a mechanism for identifying packet application or
stack association, we have chosen to instead implement the
encapsulation service more recently introduced by the
SpaceWire Working Group [6]. The improvements
presented in this paper are designed to support multiple
higher-level network stacks (IPv4, IPv6, SCPS-NP) as well
as custom applications that directly interface to the driver.

2. SPACEWIRE NETWORK LAYER

SpaceWire packets are addressed using a series of bytes
prepended to the data packet. An address in the range

[1..31] is known as a “path address” and specifies which
physical port the packet should travel through. An address
in the range [32..255] is known as a “logical address.”
When a SpaceWire router receives a packet with a logical
address, it consults the routing table to find the next packet
destination. The logical addresses of 254 and 255 are
reserved. For more detail on SpaceWire addressing, refer to
[4].

SpaceWire routing is performed by configuration of routing
tables stored on the routers. The standard method for a
router table update is a manual configuration. Routers may
be configured to delete the first byte of the address as the
packet is forwarded, a technique known as header deletion.
Header deletion is commonly applied to path addressing, to
reveal the next physical port the message will be directed to.

Since SpaceWire uses a single byte for logical addresses,
there are only 222 unique logical addresses available. To
allow for larger networks, or to support the re-use of logical
addresses, SpaceWire regions were introduced. Each region
is guaranteed to have a non-repeating set of logical
addresses.

Regional Gateways

When a packet needs to travel between SpaceWire regions,
a special logical address known as a gateway is used.
Nodes in different regions typically use different gateways
to reach the same destination. This requires that each host
node know the gateway as well as the logical address to
each potential destination. Routers are configured to
perform header deletion on gateway addresses.

Router
A

Region 1

N1

LA 32

N2

LA 33

N3

LA 34

Router
B

Region 2

N4

LA 32

N5

LA 52

67
3Data52 PID

Gateway to
Region 2

Data67 52 PID
52 PID DataTX

Message

RX
Message

Figure 1. SpaceWire Gateway Addressing

Figure 1 shows an example of gateway addressing. To
direct a packet from Region 1, Node 2 to Region 2, Node 5,
the gateway address “67” is first used to move to the new
region. When the packet is directed across the region
boundary, the gateway address is stripped off, revealing the
destination logical address of “52”.

 3

3. SPACEWIRE MESSAGES

Packets are designed to require a minimal amount of
overhead. The advantage of very small packet header size
is a reduction in the operating cost of missions designed
with custom packet handling algorithms. The packet header
is only required to contain the destination (Figure 2).

The SpaceWire packet destination is specified as a series of
bytes. Each byte may either specify the next hop in the
network by designating the router output port (path
addressing) or it may specify a reference destination that
will be translated to an output port through a routing table
(logical addressing). The series of bytes in the address is
followed by the packet data.

Address Data

Figure 2. SpaceWire Message Format

A recently proposed addition to the SpaceWire standard is
the definition of a protocol identifier [6]. The protocol
identifier (PID) indicates the network stack or application
process on the destination node. The PID may be read from
the second byte of the packet when it arrives at its
destination. The PID values between 1 and 239 are
reserved for assignment by the SpaceWire working group.
Values from 240 to 255 are used for experimental protocols
[7]. If the network makes use of the protocol identifier, the
packet must retain a leading address byte. If the system is
using path addressing where the routers will apply header
deletion to the address bytes, the protocol identifier
specification states that the first byte will be a dummy
logical address of 254 (see Figure 3).

Packet with Path Address (PA)

Packet with Logical Address (LA)

DataLA PID

DataPA PA
Dummy

LA
PID

Figure 3. SpaceWire Addressing with Protocol ID

4. SPACEWIRE BROADCAST PROTOCOL

Broadcast loops occur when a broadcast packet is sent back
to its original destination and then sent out again, creating
an infinite loop or broadcast storm. The SpaceWire
standard sidesteps this problem by not specifying a general
broadcast method. In our proposal, we will introduce a few
simple implementation rules to prevent this condition.

The SpaceWire broadcast protocol we introduce here is
built upon the SpaceWire standard. It may be implemented
in software as part of the network driver on the host nodes.
It uses the concept of a designated “broadcast server” to
distribute messages to nodes on the local router or to the
entire network.

Router
A

Subnet 1

N1

LA 32

N2

LA 33

N3

LA 34

Broadcast
Server

Router
B

Subnet 2

N4

LA 32

N5

LA 52

Broadcast
Server

Figure 4. Broadcast Servers and SpaceWire Subnets

SpaceWire Subnet

We define the concept of a SpaceWire Subnet to indicate all
nodes attached to the local router.

Broadcast Server

One host node in each SpaceWire subnet is designated as a
broadcast server (Figure 4). This is envisioned as a
secondary role of the host node; a broadcast server need not
be a dedicated system.

To broadcast a message throughout the SpaceWire network,
the host node sends a broadcast request to its broadcast
server. The broadcast server then sends the message to all
other broadcast servers with each one distributing the
message to the nodes on their subnet (e.g., all nodes
connected to the local router).

Figure 5 shows the format of a broadcast message. The
proposed broadcast protocol identifier is 254. The PID is
followed by the 1-byte broadcast protocol header and the
message payload. The broadcast header is either a zero or
one, identifying whether the server is to distribute the
message to subnet nodes (Type 0) or to other broadcast
servers (Type 1).

 4

Data52 254 0,1

Broadcast Header

Broadcast PID

DataLA PID
Broadcast

Header

Figure 5. Broadcast Message Format

Messages from the stack

When the SpaceWire driver receives a broadcast message
for transmission from a local application or from its
network stack, it distributes the message as a Type 0
message (Figure 6) to all ports on the local router, which
may include its own port. The SpaceWire driver recognizes
broadcast messages from IP (Internet Protocol) or other
network stacks because it contains a special network
address to indicate broadcast. For example, IPv4 uses
192.168.255.255 to indicate a link-layer broadcast on the
192.168.0/16 network.

Data254 0

Broadcast Header

Broadcast PID

 , n router ports1..n
(PA) 254

Dummy LA

Figure 6. Type 0 Broadcast Message

Receipt of a Type 0 Message

When a broadcast server receives a Type 0 message from
one of its host nodes, the server changes the broadcast
header byte from a value of zero to one and distributes the
Type 1 message (Figure 7) to all other broadcast servers.
Figure 8 shows the broadcast server in Subnet 1 sending a
Type 1 message to all other broadcast servers (in this
example, there is only one other broadcast server to send
to).

Data1..m
(LA) 254 1

Broadcast Header

Broadcast PID

, m Broadcast
Servers

Figure 7. Type 1 Broadcast Message

Router
A

Subnet 1

N1

LA 32

N2

LA 33

N3

LA 34

Broadcast
Server

Router
B

Subnet 2

N4

LA 32

N5

LA 52

Broadcast
Server

Figure 8. Server Broadcast, Type 1 Message

Receipt of a Type 1 Message

When a broadcast server receives a Type 1 message from
another broadcast server, it changes the broadcast header
byte from a value of one to zero and distributes the Type 0
message to all other ports on the local router. Figure 9
shows the broadcast server in Subnet 1 sending the Type 0
message.

Router
A

Subnet 1

N1

LA 32

N2

LA 33

N3

LA 34

Broadcast
Server

Router
B

Subnet 2

N4

LA 32

N5

LA 52

Broadcast
Server

Figure 9. Subnet Broadcast, "Type 0" Message

Router configuration to prevent loops

Messages generated from the broadcast service are not sent
back to the broadcast server because this would cause a
broadcast loop, an infinite cycle of broadcast messages. In
addition, by configuring the routers to drop messages with
the logical address of 254 (Figure 10), we prevent local
broadcasts from propagating to other routers, blocking a
secondary avenue for broadcast loops. The manner in
which the logical address 254 is used by the protocol
identifier specification does not preclude having the router
drop a packet which starts with 254.

In the following example, the local router is connected to a
second router on port four. When the packet is sent out of
port four, the path address of “<4>” is stripped (header
deletion) and the leading byte of the packet is now “<254>”.
 A router receiving this logical address is configured to drop
the packet. A node receiving this address understands that
this is a dummy logical address associated with a
SpaceWire path address and processes the packet.

 5

Data4 254 254 1,0

Data254 254 1,0

Router
1

2

3

4

Router
1

2

3

4
X

Figure 10. Router Blocking of Address 254

5. BROADCAST AND HIGHER-LEVEL SERVICES

The SpaceWire Standards body is currently investigating
methods for supporting “Plug And Play,” or the automatic
recognition of devices when they are added to the network.
The current proposal suggests that a device should
announce itself when it is attached to the network [8]. One
idea for this announcement is based on a router-centric
protocol, where the routers initiate the announcement of the
new device. Unfortunately, this would not be compatible
with existing SpaceWire routers. If the device was able to
initiate its own announcement through our broadcast
protocol, “Plug And Play” could work with existing router
hardware.

As a first step towards Plug And Play, we propose an
automated method for routing configuration built on our
broadcast protocol. In this section, we give three examples
of how broadcast can support automatic network
configuration and management.

Standard ARP

We define a SpaceWire hardware address based on a
device’s logical address and region. To create this
SpaceWire hardware address, we define a region identifier
to identify particular SpaceWire regions. Each region has
unique identifying number between 0 and 255. The
combination of the region identifier and the device’s logical
address define a unique SpaceWire hardware address.

When a device wishes to send a packet to a transport-layer
address (such as an IP address), it must translate this
address to a unique hardware address. Because we now
have defined a unique hardware address and have built a

link-layer broadcast service, this translation can be
performed using standard ARP software. This is a major
improvement in automatic configuration for SpaceWire
networks.

Gateway Routing and Host Updates

If logical addresses are used and there is only one region,
then routing is the responsibility of the routers; no route
information need be maintained on the host nodes.
However, when regional addressing is used, the host nodes
must maintain gateway addresses to each region. It is far
more cumbersome to maintain route information on host
nodes than on routers. Currently this requires manual
configuration and maintenance. To alleviate this problem,
we have designed a method that uses our broadcast
mechanism to automatically disseminate gateway routing
updates to the host nodes.

In our approach, each host node maintains a table that gives
the list of gateway addresses needed to reach a region from
that node. The network driver forms the destination address
by prepending the appropriate gateway addresses to the
destination’s LA.

Router
B

Region 2

N5

LA 52
72

Router
C

Region 3

N2

LA 51

Region Gateway List

2 67

3 67, 72

Router
A

Region 1

N1

LA 32

67

Figure 11. Region to Gateway Translation

Figure 11 shows an example of how gateway tables are
used. To send a packet from Region 1 to Region 2, the
gateway “67” would be used. To send a packet from
Region 1 to Region 3, the gateways “67” and “72” would
both be prepended before the destination logical address.

The benefit of maintaining regional gateway tables on the
hosts is that the tables need only be updated when there are
changes to regional topology or gateway information.
Adding a node to a region or changing node logical
addresses does not require any change to the gateway tables.
 It is likely that nodes would be added or removed from
regions more frequently than regions would be added or
removed from the network.

To make this approach more adaptable than the traditional
SpaceWire routing tables, it is important to reduce the
maintenance overhead for the gateway tables. Because they
are maintained on the host nodes and may differ for nodes

 6

in different regions, this is not a trivial question. The
solution lies in using our broadcast service. Gateways
tables can be dynamically and automatically managed by
broadcasting update information whenever a change occurs.
 In this way, manual configuration of routing information
on host nodes can be eliminated. This is an important step
towards building Plug And Play networks on a regional
level.

 Standard DHCP

With our broadcast service, SpaceWire networks under IP
stacks can utilize standard DHCP software. DHCP
dynamically assigns a unique network-layer (e.g., IP)
address to a device. DHCP is used on most terrestrial IP
networks and has potential for reducing development costs
for space systems.

The addition of ARP, DHCP, and dynamic routing made
possible by our SpaceWire broadcast service would provide
the building blocks for basic Plug And Play network
configuration.

6. IP OVER SPACEWIRE

Standard IP may be embedded into SpaceWire packets. A
SpaceWire driver receiving a packet with a protocol
identifier for IP will strip off the SpaceWire headers and
forward the embedded IP message to the IP stack. In this
way, many of the standard services, such as ARP, may be
automatically supported once the embedded data packet has
been extracted. Since IP is the backbone of most of the
commonly used internet services, a few additions to
SpaceWire, such as broadcast, will enable IP applications to
run seamlessly over SpaceWire.

7. BROADCAST PROTOCOL DEVELOPMENT

To demonstrate the broadcast protocol we are developing a
protocol simulation and network driver under a Southwest
Research Institute® (SwRI®) internal research project. The
driver will support the SpaceWire Link Interface Module
(SLIM) 3U CompactPCI network card developed at SwRI®
[1]. It will implement the broadcast protocol described in
this paper. The simulation will be used to validate the
protocol and benchmark operation for large networks with
various topologies. Both the simulation and the driver will
use the same core protocol primitives.

Driver Development

Since the low-level interface details of the SwRI® SLIM
were readily available, we chose this card as the basis for
our driver development. The driver is based on embedded
Linux with a 2.6 kernel. The driver will implement the
SpaceWire packet encapsulation and broadcast service. The

encapsulation service will initially be designed to recognize
IP, but could easily be expanded to handle other high-level
protocols.

When messages arrive on the network interface, they are
inspected by the encapsulation service to determine their
protocol type. The messages are then passed to the
appropriate network stack hooks. For example, IP messages
are passed to the IP stack for processing, or raw messages
may be passed straight to a custom application for
processing. On a broadcast server, the driver would pass
broadcast messages to the broadcast service to be processed
by the SpaceWire broadcast protocol. As described in
Section 4, if a broadcast message is a Type 0 message, a
Type 1 message will be sent to all other broadcast servers.
The message will also be passed up the stack to the
encapsulation service for further processing. If the message
is a Type 1 message, a Type 0 message will be sent to all
other ports on the server’s local router.

Messages targeted for transmission to the network are
passed to the encapsulation service to be tagged with the
appropriate SpaceWire protocol identifier. If the
encapsulation service detects that the outgoing message is a
broadcast, the message will be passed to the broadcast
service. Once in the broadcast service, a list of SpaceWire
path addresses will be generated to target the message as a
Type 0 broadcast to all local router ports.

The driver may be configured on startup using a
configuration file or through ioctl() (input/output control)
calls from an application. The driver configuration
information includes a list of the SpaceWire hardware
addresses for the broadcast servers and an initial list of
known regions and their associated gateways.

SpaceWire Demonstration Network

Our test network uses three SwRI® SpaceWire SLIM cards
as well as a COTS SpaceWire link interface to illustrate
device interoperability. We are using a 4-Links SpaceWire-
PCI network card and two eight-port STAR-Dundee
SpaceWire routers [10].

STAR-
Dundee
Router

Subnet 1

N1

SLIM

N2

SLIM

N3

4Links

STAR-
Dundee
Router

Subnet 2

N4

SLIM

Figure 12. SpaceWire Demonstration Network

 7

Using the network configuration shown in Figure 12, we
can demonstrate broadcast message propagation over a
simple network, over a multi-region topology, and between
two adjoining routers. This not only demonstrates the
broadcast action of the protocol, but it also demonstrates
that the protocol does not produce broadcast loops.

Simulation

To further exercise our SpaceWire protocol implementation,
we are developing a network simulation. The simulator
uses the core encapsulation and broadcast functions from
the SLIM driver to process packets. A wide range of
topologies may be specified through configuration files.
The simulated devices have the ability to act as routers,
broadcast servers, or ordinary host nodes. Each device
specified in the network topology generates an individual
process. The processes are linked by socketpairs. Each
socketpair represents a physical network link between
devices on the network. Configuration files are also used to
designate scheduling and data content of message
transmission. The standard configuration files used by the
SpaceWire driver are also used for the simulation.

We are testing a number of topologies. We will evaluate
the transmission of messages from broadcast servers as well
as ordinary network nodes. Statistics quantifying the
overhead required to perform the broadcast to all nodes will
be tabulated. Information about router loading will also be
collected. Preliminary results on three network
configurations are shown below.

The first network is a simple, single router topology with
eight host nodes attached (Figure 13). Broadcast messages
are generated by any of the host nodes and propagated to all
the other nodes by the SpaceWire broadcast protocol. In
this example, the end node originating the message would
send a Type 0 message to all other ports on the router. In
this topology, a broadcast server is not required, since there
is only one subnet. The network driver performs the same
broadcast protocol operations on each node. The existence
of the broadcast server here provides the capability to
support the future attachment of other subnets.

Router

Broadcast
Server

N2 N8N3 N4 N5 N6 N7N1

Figure 13. Single Router Simulation Topology

To evaluate broadcast server interactions across multiple
subnets, a larger, eight-router, forty-eight host node
topology was evaluated (Figure 14). Each router has a
broadcast server. Any of the six nodes attached to a router
may be designated as the broadcast server. Messages
originate from a host node as a Type 0 broadcast sent to all
the ports on the local router using path addressing. All
routers are configured to drop messages starting with the
dummy logical address of 254. Since the path address is
stripped off by the local subnet router, the first byte of any
Type 0 message received by a router in the adjoining subnet
will have the value of 254, causing the message to be
dropped. This mechanism prevents broadcast loops. When
the subnet broadcast server receives a Type 0 message, it
sends a Type 1 messages to all other broadcast servers on
the network. The other broadcast servers issue Type 0
messages to their subnets, completing the broadcast to all
host nodes.

Router 1 Router 2 Router 8 ...

N1 N6...N2

Broadcast
Server

N1 N6...N2

Broadcast
Server

N1 N6...N2

Broadcast
Server

Figure 14. Multiple Router Simulator Topology

The third topology uses redundant router linking, a common
technique in space missions (Figure 15). Four routers with
six host nodes each are connected by multiple paths for
alternate data routes in case of link failure. This network
contains physical loops, providing a good illustration of the
loop-free nature of our SpaceWire broadcast protocol.

Router

Router

Router

Router

Broadcast
Server

Broadcast
Server Broadcast

Server

Broadcast
Server

N1
N2

N6
...

N1
N2

N6
...

N1
N2

N6
...

N1
N2

N6
...

Figure 15. Redundant Router Simulator Topology

Broadcasts for the redundant router topology occur in the
same way as those in the multiple-router topology. Type 0
messages are sent from the broadcasting host node to the
rest of the local subnet and the broadcast servers distribute

 8

the messages across the remainder of the network.

The preliminary simulation results show that the SpaceWire
broadcast protocol is performing a complete and efficient
distribution of messages across the network. The messages
transmitted contained one byte of data, four or five header
bytes and an end-of-packet marker (EOP). While a one
byte payload is not a typical packet size, it is sufficient to
demonstrate that data will be routed correctly across the
network to provide a broadcast. The header length varies
because during path addressing (Type 0 messages) the extra
dummy logical address byte must be included. The address
bytes are followed by the broadcast protocol ID and the one
byte broadcast type. Following the broadcast header
information, an additional protocol ID byte is used to
indicate the type of information imbedded in the broadcast.

 Single Redundant Multiple
Host Nodes 8 24 48

Total Messages Read 7 23 47
Total Bytes Read 42 138 282

Figure 16. Simulation Host Node Statistics

In each topology tested, Figure 16 shows that all host nodes
(N-1) received exactly one copy of the broadcast message.
In the simulation, the nodes know which router ports they
are attached to; the node that initiates the broadcast does not
send a message to itself. There were no host nodes missed
in the distribution and no extra message copies were
delivered.

An additional benefit of the broadcast protocol is that it
distributes the work load to all the routers in the network. If
a broadcast is performed by sequential unicast, the router on
the subnet initiating the message has the burden of
forwarding one message for every device on the network.
The broadcast protocol requires each router to forward one
message to each of its own nodes, with only a few
additional messages required to contact broadcast servers
located in other subnets. Router traffic statistics (Figure 17)
show that the router load is well balanced across the
network.

 Single Redundant Multiple
Routers 1 4 8

Total Writes 7 34 83
Writes Per

Router 7 10,9,7,8 13,14,12,11,10,9,8,6

Avg Writes 7 8.5 10.375
Figure 17. Simulation Router Statistics

The router data also shows that the number of messages
encountered by the router (Figure 17) is greater than the
number of messages received by the host nodes (Figure 16).
 This is due in some cases to router ports which drop

messages because there is no device attached. It is more
commonly due to Type 0 messages received from adjoining
routers which are dropped intentionally (through
configuration) to prevent broadcast loops and to the action
of forwarding Type 1 messages to broadcast servers on
other subnets.

The simulation results indicate that the broadcast protocol is
functioning as designed and is ready to be integrated into
the driver. It distributes messages across the network using
only a small number of extra control packets. The message
overhead of two bytes required for the broadcast is a small
addition to the packet size. Further analysis and comparison
to other broadcast methods will be performed in the future.

8. RELATED WORK

Non-broadcast ARP

At the 2006 IEEE Aerospace conference, we introduced the
idea of non-broadcast ARP [2]. During the early ARP
implementation, it became clear that a general link-layer
broadcast ARP would be more useful. A broadcast protocol
would be able to support the standard ARP, as well as being
generally available for use by other services such as DHCP
or for application-layer broadcast.

SpaceWire Plug And Play Working Group

The SpaceWire Plug And Play Working Group has
proposed a router-based approach to the Plug And Play
detection of devices [8]. The routers would store addresses
to all known devices on the network and broadcast
configuration or topology state changes by sequential
unicast. Using our SpaceWire broadcast protocol instead
could reduce the workload of routers when delivering these
messages across the network. Having support for standard
broadcast dependent services could also aid in the
automated configuration of Plug And Play devices.

9. CONCLUSIONS

In this paper, we have introduced a straightforward,
software-based approach to implementing a SpaceWire
link-layer broadcast. We have described the protocol,
driver development and a SpaceWire demonstration
network. Preliminary simulation results illustrate that the
protocol provides a complete, loop-free broadcast.

The broadcast protocol is compatible with the existing
SpaceWire standard and existing COTS SpaceWire routers
and interface hardware. The broadcast protocol and the
unique SpaceWire host address, based on the combination
of logical address and region identifier are necessary to
support standard IP ARP and DHCP over SpaceWire as
well as a new concept of regional gateway routing. By
providing these additional building blocks to SpaceWire

 9

networks, we have taken a step towards supporting more
industry-standard network applications (such as those based
on IP) and towards Plug And Play networks over
SpaceWire. Continuing research will help to further reduce
development cost and deployment time of SpaceWire-based
systems, making SpaceWire a more attractive choice for
future space missions.

REFERENCES

 [1] Mark A. Johnson, Buddy Walls, Kristian Persson, Sandra
G. Dykes, “Design of a Reusable SpaceWire Link
Interface for Space Avionics and Instrumentation,”
MAPLD, 2005.

 [2] Sandra G. Dykes, Buddy Walls, Mark A. Johnson,
Kristian Persson, “A Non-Broadcast Address Resolution
Protocol for SpaceWire Networks,” IEEE Aerospace, Big
Sky, Montana, March, 2006.

[3] Robert Klar, Sandra G. Dykes, Allison Roberts, Chris
Mangels, Buddy Walls, Mark A. Johnson, Kristian
Persson. “Internetworking Over SpaceWire:
A Link-Layer Broadcast Service
for Network Stack Support,” Presentation at the Fifth
Space Internetworking Workshop, September 2006.

[4] ECSS-E-50-12A, “Space Engineering: SpaceWire –
Links, nodes, routers, and networks,” ESA-ESTEC,
January 2003.

[5] ESA SpaceWire Web site
http://spacewire.esa.int/content/Missions/NASA.php

[6] Glenn Rakow, Richard Schnurr, Steve Parkes,“SpaceWire
Protocol ID: What Does It Means To You?,” IEEE
Aerospace, Big Sky, Montana, March, 2006.

[7] Steve Parkes, “New Addition to Standard: Protocol ID,”
SpaceWire 101 Seminar, MAPLD 2006.

[8] Patrick McGuirk, “SpaceWire Plug and Play (PnP),”
SpaceWire 101 Seminar, MAPLD 2006.

[9] IETF RFC 826, “An Ethernet Address Resolution
Protocol or Converting Network Protocol Addresses to
48.bit Ethernet Address for Transmission on Ethernet
Hardware,” IETF, November 1982.

[10] STAR-Dundee SpaceWire Routers, http://www.star-
dundee.com

 10

BIOGRAPHY

Allison Roberts is a Research Analyst in the Automation
and Data Systems Division of
Southwest Research Institute®. She
is currently developing the
SpaceWire broadcast protocol
simulation and is involved with the
deployment of SpaceWire on future
NASA missions. Ms. Roberts has
also worked with health and status
monitoring systems for the testing
of commercial aircraft and with

NASA Langley’s Space Shuttle infrared damage detection
software. She has a B.S. in Physics and an M.S. in Applied
Science from the College of William & Mary.

Sandra G. Dykes is a Principal Research Scientist in the
Automation and Data Systems
Division of Southwest Research
Institute®. Her primary interests are
in the areas of network protocols,
routing, and cooperative
infrastructure systems. Dr. Dykes
has a B.S. in Chemistry from the
University of Texas at Austin, an
M.S. in Chemistry from the
University of Texas at San

Antonio, and an M.S. and Ph.D. in Computer Science from
the University of Texas at San Antonio. She is a member of
IEEE Communication Society and IEEE Computer Society.

Robert Klar is a Senior Research Engineer and Group
Leader of the Embedded Systems
and High-Reliability Software
Group in the Automation and Data
Systems Division of Southwest
Research Institute®. He is
currently involved in SpaceWire
research and the development of
flight software for the
Magnetospheric Multiscale (MMS)
Mission. He has a B.S. in

Computer Engineering from Texas A&M University and an
M.S. in Electrical Engineering from St. Mary’s University.
He is a member of the IEEE Computer Society.

Christopher C. Mangels is a Research Analyst in the
Automation and Data Systems Division of Southwest

Research Institute®. He is
currently developing the driver

for the SpaceWire hardware.
He has a B.S in Computer Science
from Southwest Texas State
University.

ACKNOWLEDGEMENTS

The work was achieved with funding from the SwRI®
Internal Research & Development program (R9623). The
authors wish to acknowledge support from the SwRI
Division 15 SLIM board development team and to thank
Steve Parkes of STAR-Dundee for his enthusiastic support
and assistance with SpaceWire routers

 11

