

Link-Layer Broadcast Protocol for SpaceWire

SpaceWire Working Group Meeting

Sandra G. Dykes Southwest Research Institute

Overview

- Motivation & Value
- Protocol Features
- Protocol Description
- Performance
- Relationship to PnP

Motivation & Value

- Reduce software development time & cost
 - Broadcast support for <u>IP & non-IP</u> applications
 - Reuse existing software
 - Simplify new software
 - Use IP configuration & management tools ARP, DHCP, SNMP broadcast, Service Discovery (DNS, FTP, ...)
- Improve network performance*
 - Reduce router load
 - Reduce contention at switches
 - Reduce broadcast latency
 - * vs. sequential unicast

IP Over SpaceWire

Same application software on SpaceWire & Ethernet LANs

IP Over SpaceWire

Same application software on SpaceWire & Ethernet LANs

IP Over SpaceWire

Same application software on SpaceWire & Ethernet LANs

What is Needed?

- Broadcast support
- Unique hardware address
 - Required for ARP
 - SpW logical address is unique only within a region
 - Need to ARP across regions

(Automatic assignment of hardware addresses and a SpW routing protocol would simplify network management, but these are layer 2 issues and have no affect on IP applications.)

Ethernet Broadcast

Application Software

IP_dest = 255.255.255.255

• Kernel / driver ARP

Protocol 255.255.255.255 Hardware ff:ff:ff:ff:ff

• Ethernet Switch

ff:ff:ff:ff:ff:ff \Rightarrow transmit on all ports

All complexity is in switch; spanning tree algorithm prevents broadcast storms from loops.

SpaceWire Broadcast

- Implement in router or host?
- Router
 - Cleaner solution; better for network management
 - Impact on chip complexity, weight, power?
 - Not available anytime soon

• Host

- In network driver; transparent to applications
- Minimal configuration
- Efficient
- Rapid to develop and prototype

Network Stack Interface

Ethernet

Application

DHCP, SNMP, FTP, HTTP, ..., Custom

Transport

TCP, UDP, SCPS-TP

Network

IPdest = 255.255.255.255

Data Link

Network driver: dest = ff:ff:ff:ff:ff:ff Hardware interface: board specific

Physical

SpaceWire

Application

DHCP, SNMP, FTP, HTTP, ..., Custom

Transport TCP, UDP, SCPS-TP

Network IPdest = 255.255.255.255

Data Link

Network driver: BROADCAST FUNCTIONS Hardware interface: board specific

Physical

Broadcast code is independent of hardware interface code.

SpaceWire WG Meeting, January 2007

Features

- Loop-free broadcast
- Adheres to SpaceWire standard
- No change to SpW routers
- No change to SpW interface hardware
- No change to applications
- Co-exist with PnP proposal.

Broadcast Packets

Using Protocol ID 253

Protocol Operation

- One node per router acts as a Broadcast server (BcS)
- Additional nodes may serve as backup BcS's for redundancy
- 1-byte broadcast header
- Two message types: Type 0, Type 1
- Three step protocol

Step 1

Source Node sends Type 0 message to all ports on local router:

<1><254><253><0><data>

<2><254><253><0><data>

Step 2

Local BcS sends Type 1 message to other BcS's:

<LA><253><1><data> logical and/or port addresses.

Step 3

<u>Remote BcS</u> sends Type 0 message to all ports except itself:

<1><254><253><0><data>

<2><254><253><0><data>

Packet Formats

Packet Formats – ARP Example

Packet Formats – PnP Example

Broadcast Server Configuration

- General nodes
 - No configuration
- Broadcast Server nodes
 - List of Broadcast Servers and path to each.
 - It own port number on the local router (not needed if PnP discovery or protocol extension)
- Routers
 - NULL entry for logical address 254

(not needed if PnP discovery)

Unique Hardware Address

Necessary for ARP, not for broadcast.

Problem

- Hardware address must be unique across the LAN
- But ... SpW interfaces do not have a unique pre-assigned hardware addresses and logical address are unique only within a region.

Solution

- Assign 1-byte Region ID
- Hardware address is <RegionID><Logical Address>
- 2-byte address

Region ID never appears in SpW header; it is used only within driver software.

Performance Evaluation

- Metrics
 - Traffic distribution across routers
 - Router load
 - Broadcast latency (time to complete)
- Evaluation Methods
 - Analytical Analysis
 - Simulation

Traffic Distribution: Linear

Traffic Distribution: Mesh

Router Load & Broadcast Latency

Relationship to PnP

- Typically different purposes
 - Broadcast discovers shared services on distributed network: DHCP, FTP, TFPT, HTTP, ...
 - PnP historically for dedicated peripheral devices (e.g. USB)
 - Data source / data sink model?
- Can PnP be used in broadcast?
 - PnP information on which ports are connected to nodes, to other routers, or not connected would improve performance.
- Can broadcast be used in PnP?
 - Resource discovery by broadcast queries is alternative to central data manager at known address (e.g., SDM xTEDS).
 - Efficient notification method, but may be chicken and egg problem.

Summary

- Simple & efficient
- Confined to network driver
- Can be used by any upper layer protocol (IPv4, IPv6, SCPS) or directly by application.
- Prototype implementation nearing completion
 - Linux network driver for SwRI cPCI SpW board.
 - Testbed: 2 StarDundee routers, 3 SwRI boards, 1
 4Links board.
- Protocol specification document and broadcast function API will be available.