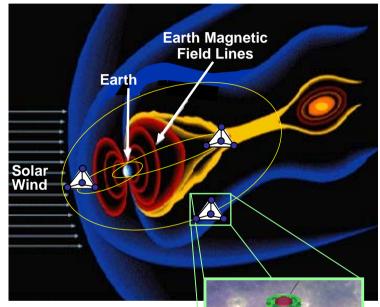


Magnetospheric MultiScale Mission (MMS)

Magnetospheric MultiScale Mission

SpaceWire Implementation

George L. Jackson, MMS Spacecraft Avionics Lead David Raphael, MMS C&DH Lead Glenn Rakow, NASA SpaceWire Representative


> SpaceWire Working Group Noordwijk, Netherlands January 17-18, 2007

MMS Mission Overview

Magnetospheric Multiscale Mission (MMS)

Mission Team

NASA SMD Southwest Research Inst Science Leadership Instrument Suite Science Operations Center NASA GSFC **Project Management** Mission System Engineering Spacecraft **Mission Operations Center** NASA KSC Launch services

Science Objectives

Discover the fundamental plasma physics process of reconnection in the Earth's magnetosphere Temporal scales of milliseconds to seconds

Spatial scales of 10s to 100s of km

Mission Description

- 4 identical satellites
- Formation flying in a tetrahedron
- 2 year operational mission

Orbits

Elliptical Earth orbits in 2 phases

Phase 1 day side of magnetic field 1.2 R_F by 12 R_F Phase 2 night side of magnetic field 1.2 \overline{R}_{E} by 25 \overline{R}_{E}

Significant formation flying and orbit adjust requirements Instruments

Identical in situ instruments on each satellite measure Electric and magnetic fields

- Fast plasma
- **Energetic particles**
- Hot plasma composition

Spacecraft

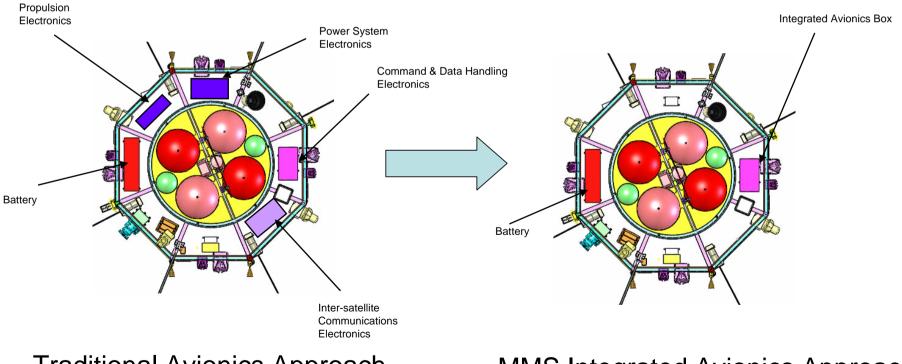
Spin stabilized at 3 RPM Intersatellite ranging system

Launch vehicle

4 satellites launched together in one Evolved Expendable Launch Vehicle (EELV)

Mission Status

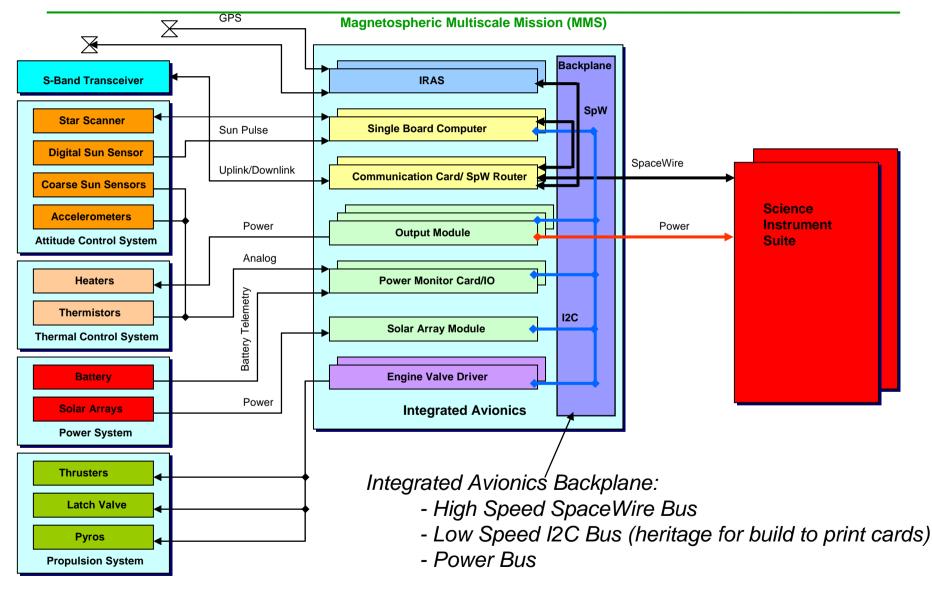
Currently in Phase A Launch in 2013



MMS Spacecraft Avionics

Magnetospheric Multiscale Mission (MMS)

- Traditional spacecraft avionics systems use separate electronics boxes for each function.
- MMS has baselined an integrated avionics architecture, in order to save power, mass and reduce integration and test cost.


Traditional Avionics Approach

MMS Integrated Avionics Approach

Spacecraft Avionics Block Diagram

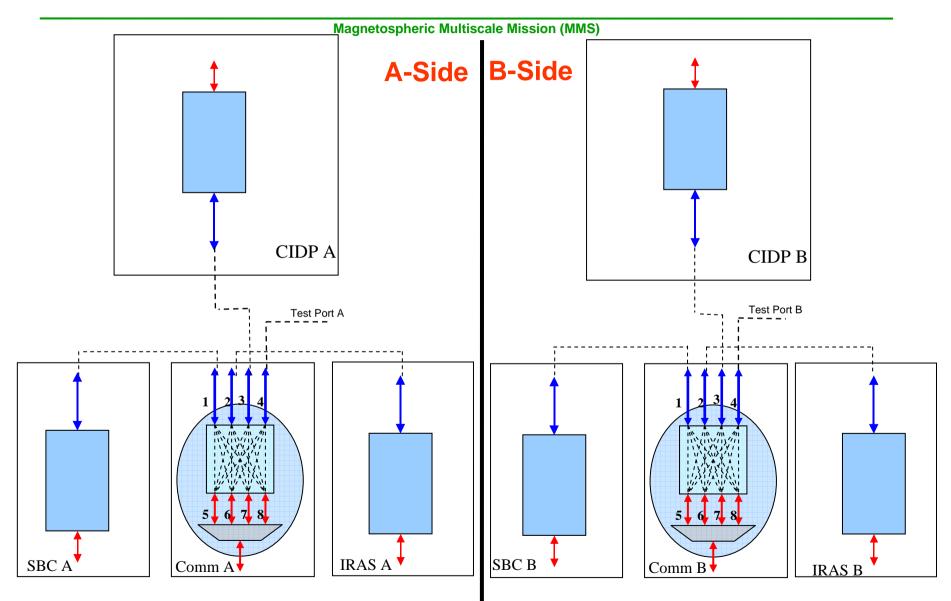
Magnetospheric Multiscale Mission (MMS)

- Low speed communications between integrated avionics subsystems will occur over an internal I2C bus
 - This bus is used because of heritage build to print boards
 - power system electronics boards
 - This bus will be eliminated in future integrated avionics systems
- Higher speed communications between integrated avionics subsystems will occur over an internal SpaceWire backplane.
 - Remote Memory Access Protocol will support I/O and memory transactions.
 - Distributed Interrupt Time-Code mechanism will support sideband signaling.
 - Require multiple side band signaling
 - Need to investigate handshaking mechanism for system operation to see if it will meet requirements
 - Time Code Protocol will support internal time distribution.

• SpaceWire will replace the traditional cPCI bus for MMS

Backup SpaceWire Advantages for MMS

Magnetospheric Multiscale Mission (MMS)


- SpaceWire backplane should be simpler than cPCI.
- Reduces the number of interfaces between the Instrument Suite and the Spacecraft.
 - 1553, Custom LVDS, and RS-422 UART Interfaces were replaced by a single SpaceWire Interface.
 - Reduces the number of harnesses between the Instrument Suite and Spacecraft.
- Reduces the technical risks associated with custom interfaces.
 - Designing to an industry standard reduces the risk of ICD custom interface misinterpretation.
- Reduces interface complexity between the Instrument Suite and the Spacecraft.

• A single SpaceWire interface is simpler than a mixed bag of two standards (1553 and RS-422) and one non-standard (custom LVDS) interface.

- Provides a more flexible architecture.
 - Enables easier cross-strapping between the A and B sides.
 - Allows variable data rates.
 - Packet sizes are not restricted (1553 restricts packets to < 64 bytes).
 - Enables communication from the Instrument Suite to the IRAS, Communications Card, or the Single Board Computer over a single interface link.
- Improvements in Observatory Integration and Test.
 - I&T is simplified with a single SpaceWire interface between the IS and SC.
 - Enables remote I&T between GSFC and SwRI.
- Reduces GSE development engineering.

• SpaceWire GSE exists for JWST and LRO. Should be able to re-use this GSE for MMS with minor changes.

Magnetospheric Multiscale Mission (MMS)

- NASA is interested in the SpaceWire Backplane Standardization for MMS and future flight missions.
- MMS should be the first NASA mission to fly several new SpaceWire protocols including:
 - Remote Memory Access Protocol
 - Distributed Interrupt Protocol
 - Standardized Backplane
- We look forward to working with the SpaceWire Working Group to help make the new SpaceWire protocols successful for MMS and future missions.

Magnetospheric Multiscale Mission (MMS)

- ETU fabrication is scheduled to begin in Fall 2008.
- Flight fabrication is scheduled to begin in Spring 2009.
- The SpaceWire Backplane Connector Standard and connector flight qualification program would need to meet the MMS ETU and Flight fabrication milestones.
- Need SpaceWire Backplane Standard definition and flight qualified connector by Spring 2008
 - Would like to be part of the SpW backplane connector working group
- Distributed Interrupt TC requires a clear message (poll message) to enable another TC
 - Some systems simply want to have more side band signals and from multiple sources