SpaceWire Remote Terminal Controller

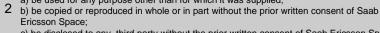
Torbjörn Hult

18 May 2006

This document or software is confidential to Saab Ericsson Space and may not:

a) be used for any purpose other than for which it was supplied;
b) be copied or reproduced in whole or in part without the prior written consent of Saab Ericsson Space;

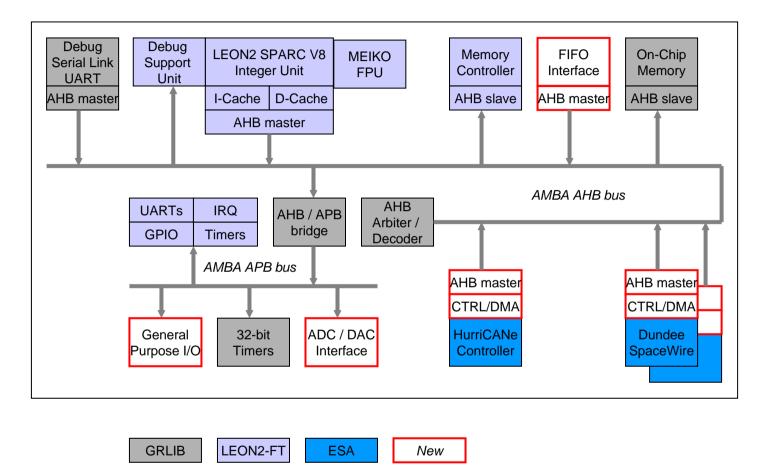
c) be disclosed to any third party without the prior written consent of Saab Ericsson Space.



SpaceWire RTC contract

- ESA study
- Prime Contractor: Saab Ericsson Space
- Subcontractor: Gaisler Research
- Foundry: ATMEL, ATC18RHA 0,18µm process, multi-project wafer run

This document or software is confidential to Saab Ericsson Space and may not:


a) be used for any purpose other than for which it was supplied;

c) be disclosed to any third party without the prior written consent of Saab Ericsson Space.

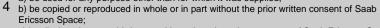
SpaceWire RTC overview

For more details, see the RTC presentation from SpaceWire WG4 meeting

This document or software is confidential to Saab Ericsson Space and may not:

- a) be used for any purpose other than for which it was supplied;
- 3 b) be copied or reproduced in whole or in part without the prior written consent of Saab Ericsson Space:

c) be disclosed to any third party without the prior written consent of Saab Ericsson Space.


SpaceWire Module Functions

- SPW CODEC IP from ESA (UoD) used
- RMAP support (Read & Write block)
- Extra Rx and Tx Channels controlled by S/W
 - Packet handling (multiple packet, buffer limits, alignment, debug)
 - Sending RMAP commands, separating header and data, CRC generation for header (data CRC is generated in H/W)

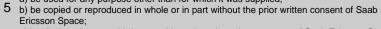
Saab Ericsson Space

- Reception of Transfer protocols not supported in HW.
- Time Code, Receive and transmit
- 200 Mbit/s capability, @ 100MHz SpW Clock, i.e. DDR only
- I/F to AMBA bus

a) be used for any purpose other than for which it was supplied;

This document or software is confidential to Saab Ericsson Space and may not:

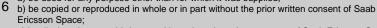
FPGA Validation


- Based on a Gaisler Research GR-CPCI-XC2V Development Board
- Additional mezzanine modules to house CAN, SpaceWire, FIFOs, UARTs and analogue I/O
- Device operation
 - System incl. Leon: 30 MHz
 - SpaceWire: 100 MHz, no DDR
- Tests performed
 - Individual function validation (CPU, SpaceWire, CAN, FIFO, Timers etc)
 - Five different system applications
 Full speed transfers on FIFOs + SpaceWire links (2)
 Full speed transfers + Dhrystone in CPU
 Full speed transfers + Stanford in CPU
 Full speed + Dhrystone + CAN + ADC/DAC + GPIO

This document or software is confidential to Saab Ericsson Space and may not:

a) be used for any purpose other than for which it was supplied;

FPGA Validation results

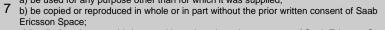

- CPU performance:
- SpaceWire link performance:
- FIFO operation:

• Mixed operation:

- Comparable to AT697 test
 results
- Two bidirectional links running at max speed giving only 2.2% NULL tokens
- FIFO operation at 1,5% overhead average when writing from on-chip RAM, up to 39% overhead when writing from offchip RAM
- SpaceWire: <3% NULL tokens FIFO: 150 – 200 Mbps CPU: <30% reduction in performance when running I/O

This document or software is confidential to Saab Ericsson Space and may not:

a) be used for any purpose other than for which it was supplied;



RMAP implementation experience

- Error handling interpretation: ۲
 - Some cases of interpretation difficulties have been seen:
 - EEP received instead of EOP with correct packet length Report early or late EEP, i.e. cargo too large?
 - Read command packet that includes data Report Late EOP (cargo too large) or consider it as general header error, i.e. no reply? ۲
 - Verified write with both misalignment error due to odd number of data and too much data Report buffer overrun or authentication error due to the misalignment?
 - Others that have now been included in Draft E • E.g. how to differentiate between commands supported by the standard and commands not implemented by the node
- **CRC** generation ${}^{\bullet}$
 - The examples in the RMAP draft E uses LSB to the left (or as MSB for all normal use) according to Figure 15 in the standard. Especially for the C code example this causes some confusion as data has to be reversed before using the table. The examples should be improved and a clarifying figure useful
 - Header CRC generation in S/W and data CRC generation in H/W was found to be the most practical solution

This document or software is confidential to Saab Ericsson Space and may not:

a) be used for any purpose other than for which it was supplied;

c) be disclosed to any third party without the prior written consent of Saab Ericsson Space.

Remaining work

- ASIC synthesis
- Prototype manufacturing
- Prototype validation

This document or software is confidential to Saab Ericsson Space and may not:

a) be used for any purpose other than for which it was supplied; 8 b) be copied or reproduced in whole or in part without the prior written consent of Saab Ericsson Space:

