

NASA SpaceWire Activities/Comments/Recommendations

SpaceWire Working Group Meeting

ESTEC, Noordwijk, NL May 18-19, 2006

Presented by Glenn Rakow - NASA/GSFC

Contents

- Protocol ID assignment
- Protocol development
- Plug & Play (PnP)
- Recommended additions to SpW protocol
- SpaceFibre trade

Protocol ID Assignment

- Protocol ID assignment philosophy
 - Large Protocol ID space (16 bits)
 - Advantages to having more assignments?
 - More choices
 - More manpower to solve common satellite applications problems and to improve on existing work
 - More confusing
 - Too many choices
 - Will SpW working group support multiple similar protocols?
 - Example General Access Protocol (GAP) and RMAP
 - Perhaps all supported protocols not all part of ECSS-E-50-11 or standardized under ECSS
- How will future protocols be documented?
 - Web-site?
 - Standardized?
- Differences at protocol level between devices should not necessarily present architectural problem

Protocol Development

- Most US satellite missions use protocols in experimental range
- Several protocols have been developed with working implementations from multiple institutions
 - General Access Protocol (GAP)
 - Similar to RMAP
 - Can differences between RMAP and GAP be resolved?
 - Reliable Data Delivery Protocol (RDDP)
 - Acknowledgement & retry mechanism
 - For generic packet cargo identifiable via sub-protocol ID
- GAP is base lined for multiple missions
- RDDP is base lined for GOES-R
 - NOAA/NASA weather satellite
- Developers of protocols would like permanent Protocol ID assignments
 - Recommend formal presentation of GAP & RMAP at next working group meeting

Plug and Play (PnP)

- What needs to be done to make SpW routers & nodes to PnP?
- US industry & government investigating these issues
 - How can US & SpW working group collaborate
 - New working group with ECSS path?
- Network Discovery
 - Using RMAP and/or GAP
- SpW standard needs clarification for
 - Priority
 - Group Adaptive routing
 - Configuration O space
- Device Enumeration
 - Not necessary SpW specific
 - However some advantages to use RMAP and/or GAP

Recommended Additions to SpW protocol

- Many satellite architectures require redundancy at Physical level
 - Transparent to user is preferred
 - Autonomous switch-over
 - This is something that should be address by standard
 - NASA has a implementation for Physical level redundancy
- Single Time-Code (TC) master is restrictive
 - Many systems would like to have more than one TC master
 - Current standard may be easily extended to four

SpaceFibre Trade

SpaceFiber Goals

- Use DC balanced encoding to obtain Gigabit rates
 - 8b10b
 - Ability to use copper or Fiber depending upon requirements
 - To what extent is variable rate possible? How do you change rates? PLL? On fly?
- Backward compatible to SpW
 - Bridge between two link protocols via Switch
 - Maintain worm-hole routing capability
- Ability to check for packet errors on fly but not have to wait until the end of the packet for faster recovery
 - How do you place error detecting code on data
 - At what boundary byte, field (size?), packet
- Take advantage of K codes for logical characters to simplify implementation
 - Is error coding required on K Codes
- Minimize synchronization sequence
 - Is it necessary?
 - If so how often?
 - And how long?
- Maintain bandwidth efficiency as much as possible
 - Should Flow Control Tokens (FCTs) represent more than 8 N characters
 - Should N-Characters be replaced with Data characters

SpaceFiber Trade Investigations

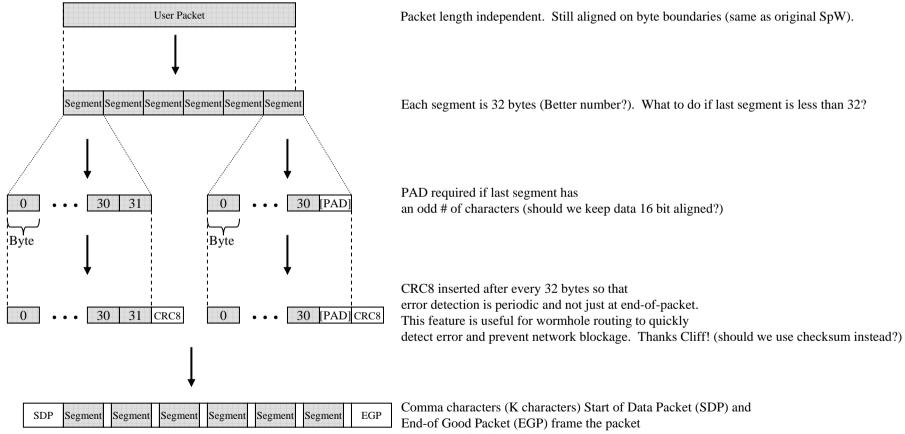
- What is the optimal length for error detection coding for SpW to reduce overhead but yet react quickly to prevent network blockage?
 - Error detection code at end of packet or per data length field?
 - How long a field?
 - What type of error detection code
 - CRC (8 bit?)
 - Length?
 - Checksum?
- Can K codes errors be detected as something other than what is desired? Can they be interpreted as good data another K code, etc.
- Should a bad K code bring down the link?
 - If so then a bad K code can not be ignored?
- What is the longest run without a synchronization sequence?
- Does there have to be a synchronization sequence?
 - If so, is it only at start-up or does it have to be periodic?
- What size should the FCTs represent?

SpaceFiber Trade Scenario

- Use 8b10b encoding
- Encode data every 32 bytes (what should value be?) with 8 bit CRC (something better?) to allow earlier detection of error
 - Truncated portion of packet may be less than 32
 - Packet may be less than 32
- Use K codes for Logical characters
- Use 8 bit CRC with K codes and Data values associated with K codes
- Flow control is only for Data characters and not N-characters
- Flow control represents 32 bytes of data
 - About 5% overhead (about same as current standard)

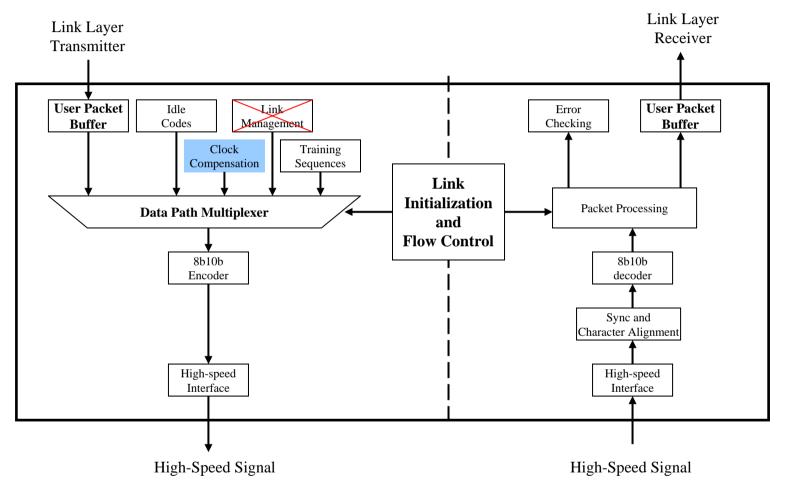
Proto-type

- Proto-type SpaceFiber on SerialLite or Aurora protocols
 - SerialLite
 - Altera
 - Aurora
 - Xilinx
 - Probably easier to do with *SerialLite*, but *Aurora* quicker path due to users and experience with Xilinx
- Flight design should be based upon TLK2711 or other Rad-Hard Giga-Bit Per Second (GBPS) Transceiver
 - Do not want to have IP licensing restrictions (SerialLite or Aurora) so proto-type solutions will have to be migrated over to final solution based upon unique designs


Assumptions

- Full Duplex operation
- Symmetric and asymmetric operation (allows different rates in each direction)
- In-band control signaling using K codes
- Packet protocol (SpW) No streaming
- Use packet and priority packet types Priority packets for Time-Code, (FCT/NULL?)
- Nesting (Priority packet within Data packet) for time critical control packet
- Use single Lane
 - Simplifies design by not having complexity of Striping (at Tx) and Bonding (at Rx)
 - See Figure 3 of "*SerialLite* Protocol Overview", Revision 1.0, November 2003
 - Multi-Lane Links may be something to consider for future
 - If bandwidth becomes a limitation
- Packet sizes (Data & Priority): minimum one byte ; no maximum
- 8b/10b physical encoding
- Asynchronous operation no synchronous operation
 - Necessary for Box-to-Box operation where independent oscillators exist
 - See page 8 of "*SerialLite* Protocol Overview", Revision 1.0, November 2003
- No Lane polarity reversal LSB transmitted first (less confusion)
- Data field integrity protection (not packet) using CRC8 better for worm-hole routing
- Payload and Idle scrambling????????????
- No Channel Multiplexing
 - Not supported by SpW standard
 - Once packet starts on wire it must be completed before another packet may start
 - Does not preclude priority packets
 - Used for Time-Code (?)
- Serial Lite Flow Control not used
 - Pause commands (XON/XOFF)
- Flow control represents Rx Buffer space, except different value and meaning
 - Represents space for <u>only</u> Data Characters and not N-Char (Data and EOP/EEP Characters)
 - Value represents Rx Buffer space for more than 8 Characters (SpW standard)
 - Suggest 32 Data characters per FCT

SpaceFibre Packet Format



Note: End-of Bad Packet (EBP) may also replace EGP

High Level Data Path*

* Diagram modified from Figure 3 of SerialLite Protocol Overview, Revision 1.0, November 2003

Functions

• Transmit Direction

- Serialization of Data
- 8b/10b encoding (Does this keep track of running disparity in the TLK2711?)
- Link Initialization
- Insertion of clock compensation characters for asynchronous operation
- Idle character conversion
- Payload and Idle scrambling

Receive Direction

- Clock recovery
- Deserialization of data
- Character alignment using a comma control characters
- 8b/10b decoding
- Link Initialization
- Check for running disparity error and invalid character error
- Clock tolerance compensation for asynchronous operation
- Payload and Idle descrambling

Clock Compensation

- For +/- 100 ppm => Clock Offset Frequency Calculation = 5,000
 - See "SerialLite II Protocol Reference Manual", pg 34 & 35 for definition and explanation
 - Clock Offset Frequency Calculation = 1,000,000/(2 * n)
 - Transmitter must insert one clock compensation sequence,{CC}, once every 5,000 characters (character is byte after conversion to it's 10 bit encoded value)
- Elastic buffer must be designed after the Transceiver to compensate for the frequency difference between the reference clock and the recovered clock by deleting the {CC}
 - Rules for {CC} described in "SerialLite II Protocol Reference Manual", pg 34 & 35