

SpW Application from JAXA

18/May/2006

SpaceWire Working Group Meeting 6

Tetsuo YOSHIMITSU (ISAS/JAXA) The MINERVA rover primary investigator & A man involved in SpaceWire Masaharu NOMACHI (Osaka University) Hiroki HIHARA (NEC TOSHIBA Space Systems, Ltd.)

Contents

- SpW application to robots
 - current robot: asteroid rover
 - future robot project
- Space Cube series
 - CPU box with SpW I/Fs working by T-Engine realtime kernel
 - Space Cube I
 - Space Cube II
- SpW demonstration by Space Cube II

MINERVA

- <u>MIcro/Nano Experimental Robot Vehicle for Asteroid</u>
- Installed in HAYABUSA spacecraft
- should have become the first asteroid surface explorer
 - deployed to the asteroid surface on 12 Nov, 2005
 - did not land on the asteroid surface
 - became a solar orbiting satellite
- Very small and light-weighted
 - mass: 591[g]
 - size: diameter 120[mm] x height 100[mm]
 - can be applicable to a record in Guiness Book?
- Technical experimental rover
 - hopper
 - autonomous exploration

HAYABUSA Mission

- sample return mission to asteroid
 - size: 1000 x 1600 x H1000[mm]
 - mass: 512[kg] (with fuel), 380[kg] (without fuel)
- launched on 9 May, 2003.
- rendezvous at ITOKAWA in Sep, 2005.
- touchdowns to ITOKAWA in Nov, 2005.
- still on the asteroid orbit till 2007.
- will be back to the Earth in 2010.
- target asteroid "ITOKAWA"
 - size: 540 x 250 x 220[m]
 - very weak surface gravity gravity: 4x10⁻⁶ ~ 2x10⁻⁵[G] escape velocity: 16 ~ 24[cm/s]

size	hexadecagonal pole (diameter: 120[mm], height	t: 100[mm])
mass	591[g]	
onboard computer	32bit RISC (@10[MIPS])	
	ROM: 512[kB], RAM: 2[MB], FlashROM: 2[MB]	
OS	iTRON (realtime OS)	
actuators	DC motor \times 2	
mobile system	hopping (max 9[cm/s]@rigid surface)	
power supply	solar cells: max: 2.2[W] @1[AU] from Sun	
	capacitors: 5[V],25[F]	A TI
communication	9,600[bps] (half duplex, max distance: 20[km])	
sensor(navigation)	photo diode $ imes$ 6, thermometer $ imes$ 4	
sensor(science)	color CCD camera $ imes$ 3, thermometer $ imes$ 6	
temperature range	-50 \sim +80 [C]	
life	3[asteroid days] (1[asteroid day]=12.15[h])	~ T-

MINERVA flight model

- Deployed on 12 Nov, 2006 by the command from the ground.
- But ...
 - MINERVA did not arrive at the asteroid due to the unexpectedly large velocity of Hayabusa relative to the asteroid.
 - MINERVA became a Solar-orbiting satellite.
 - Telemetry link between MINERVA and Hayabusa was established for 13 hours after the deployment
 - After the telemetry link was over, no one knows what MINERVA became.
 - The last telemetry showed MINERVA was very healthy. It may be active now

MINERVA is a hopper.

Microgravity experiment using a drop tower

- MINERVA captured Hayabusa after the deployment.
- It was the first picture that the spacecraft in the deep space (300×10^6 km away) was directly shot from the other spacecraft.

the voltage of the battery

PDs measuring the incoming light (6ch)

250[sec]

212[sec] after deployment

300[sec]

MINERVA

Future Plan of Robotics: Small Space Robot Probe

- weighted in a few kilograms: Pico-sized S/C
- ex.
 - Another asteroid surface rover (MINERVA-II,III,IV,V ...)
 - Small flyby S/C to asteroids and comets
 - Earth orbiting robot satellite (such as autonomous rendezvous)
- Network bus is not necessary. But for making various probes fast and cheaply, SpW may be one solution for sensor I/F
 - CPU modules are always identical.
 - Sensors are connected by SpW I/F to the CPU module.
 - Sensors are different in mission to mission.
 - Power and thermal controllers are adjusted in mission to mission.

Don Quijote (ESA)

Phobos soil (Russia)

Future Plan of Robotics: Lunar Rover

- weighted in 20-50[kg]
- Network bus is essential for the data handling of this class of S/C.

SpaceCube I

Small CPU box provided with three SpaceWire I/Fs based on TeaCube (a commercial product)

Specifications

- size: 52[mm] × 52[mm] × 55[mm]
- mass: 220[g] (not including a power supply)
- CPU: VR5500CPU (clock: 200MHz)
- OS: T-Engine (successor of iTRON) Linux
- color: black
- I/F:.
 - SpaceWire × 3 ports
 - USB×2 ports
 - Compact Flash
 - VGA (display)
 - RS-232C serial port
 - LAN
 - Headphone, Microphone

Notice

- Not guaranteed a use in space.
- You can make a presentation and listen to music.

SpaceCube II

- Space-proof CPU board provided with SpaceWire I/Fs
- Not a cube. Looks like a M*c Mini

CPU board

*M*c Mini:165mm x165mm x 51mm, 1.3kg

SpaceCube II

Specifications

- size: 148mm x 148mm
- height: 40mm (stacked by CPU board and IO board)
- CPU: radiation-proof MIPS based 64bit CPU developed by JAXA (processing speed: max of 200[MIPS])
- power: 10[W]
- OS: T-Engine
- I/F
 - SpaceWire I/F imes 6 ports
 - LAN
 - serial: RS232c imes 2 ports, RS422 imes 2 ports

Notice

- will be usable in space.
- You can neither make a presentation nor listen to music
- Current Status
 - Prototype model was fabricated
 - Installation of OS is being conducted and will be completed in August

Demonstration by Piggyback Satellite

- Launch: Summer, 2008
- vehicle: Japanese H-IIA rocket

- main satellite: GOSAT (1650[kg], Earth observing satellite) There is a large extra cargo space
- orbit: Sun-synchronous polar orbit (altitude: 666[km])
- Piggyback satellites to be launched
 - (1) Engineering small satellite by JAXA
 - 100[kg] class
 - SpaceCube II will be installed
 - (2) Small satellites from the general public
 - Public announcement of call for satellites was published on 10/May/2006 by JAXA only in Japanese.
 - weight: 1 50[kg]
 - application due: Aug.2006

one of the current designs

- New technical functions are tested and demonstrated by the satellite based on a matured components.
- SWIM (SpaceWire Interface Module) composed of the SpaceCube II and the sensor sub-module

SWIM (SpaceWire Interface Module)

- size: 200mm x 200mm x 150mm
- mass: 5.0[kg]
- power: 25[W] (including loss by DC-DC)
- What SWIM do?
 - Obtained data by a couple of sensors are transmitted by SpW to SpaceCube II.

SWIM Configuration

- Sensors
 - two Gravitatinoal wave detector
 - measurement of environment
- Routing

Summary

- Future rover project in Japan may use SpW
 - as a sensor I/F in Pico-sized small probes.
 - as a main databus in Lunar rovers.
- Space Cube I (CPU box with SpW I/Fs) Use in space is not guaranteed.
- Space Cube II is being developed. It can be used in Space.
- We are planning to demonstrate SpW in space by a piggyback satellite launched in 2008 including Space Cube II

Proceed to Prof. Nomachi