SpaceWire Links, Routers and Networks

Steve Parkes University of Dundee

Contents

- Introduction
- SpaceWire Standard
- SpaceWire Time-Codes
- SpaceWire IP and Devices
- Key Features of SpaceWire
- Higher Level Protocols

Space Technology Centre University of Dundee

SpaceWire provides a unified high-speed data-handling network for connecting together

- Sensors,

Introduction

- Processing elements,
- Mass-memory units,
- Downlink telemetry sub-systems,
- EGSE

Introduction

Space Technology Centre University of Dundee SpaceWire a standard for spacecraft onboard data-handling

- ESA ECSS-E-50-12A
- Based on two commercial standards
 - IEEE-1355 with bugs fixed
 - LVDS (Low Voltage Differential Signalling)

 SpaceWire is the result of work by many people across the world

Standard

- The SpaceWire standard covers the following normative protocol levels
 - Physical Level: Connectors, cable assemblies and PCB tracks
 - Signal Level: Data-Strobe signal encoding, voltage-levels, noise margins, and data rates
 - Character Level: Data and control characters used to manage the flow of data across a link
 - Exchange Level: Protocol for link initialisation, flow control, link error detection and link error recovery
 - Packet Level: How data is split up into packets for transfer across a SpaceWire link
 - Network Level: Structure of a SpaceWire network, transfer of packets across a network, handling of errors

Physical Level

- Cables
- Connectors
- Cable Assemblies
- PCB Traces

Cable Construction

Conductor 28 AWG (7 x 36 AWG) Insulating layer Filler

Twisted pair

Inner shield around twisted pair (40AWG) Jacket Filler Binder Outer shield (38AWG) Outer Jacket

Signal Level

Low Voltage Differential Signalling (LVDS)
Signal Encoding - Data/Strobe Encoding

Data Encoding

SpaceWire uses Data-Strobe (DS) encoding

- Data values transmitted directly
- Clock encoded with data to form strobe
- XORing data and strobe recovers clock
- Provides improved jitter/skew tolerance compared to data clock encoding

D and S transmitted differentially using LVDS

Data Signalling Rate

- Minimum data signalling rate
 - 2 Mbits/s
- Maximum data signalling rate
 - Depends on skew/jitter and attenuation
 - >> 100 Mbits/s
- Operational data signalling rate
 - Any rate 2 Mbits/s to maximum
 - Rx and Tx can operate ad different rates
 - Tx rate may be altered at any time after link connection made
- Initial data signalling rate 10 +/- 1 Mbits/s

Character Level

- Character level defines
 - Data characters
 - Used to transfer data
 - Control characters
 - Used to manage flow of data across link
- Two types of character
 - L-char
 - Concerned with link operation
 - N-char
 - Used to carry data and delimit packets

Data Characters

Control Characters

Exchange Level

Exchange Level Protocol defines

- Link initialisation
- Flow control
- Detection of link errors
- Recovery from link errors

Full State Machine

Flow Control

- Flow control used to avoid overflow of host receive buffer
 - Use flow control tokens (FCTs)
 - Send FCT from end A to end B
 - when end A can accept 8 more N-Chars.
 - This enables end B to send up to 8 more N-Chars.
 - Multiple FCTs can be sent if there is more room in buffer.
- FCT is exchanged for 8 N-Chars
- TX and RX must keep count of credit.

Normal Operation

Space Technology Centre

Error Detection

- Disconnect Error
 - No RX clock transition for more than 850 ns
- Parity Error
 - Parity bit
- Escape Error
 - ESC should only be followed by
 - FCT to form a Null
 - Data to form a time-code
- Credit Error
 - If there is no room in host RX buffer for data received then an error must have occurred that affected the FCTs
- Empty Packet Error
 - EOP/EEP followed by another EOP/EEP

Packet Level

Packet Level Protocol

Defines packet structure

SpaceWire Packets

- Packet formal
 - <DESTINATION><CARGO><EOP>
- Destination
 - Represents path to or identity of destination node
- Cargo
 - Data or message to be transferred from source to destination
- EOP
 - Indicates end of packet

- Several link interfaces interconnected via a switching matrix.
- Wormhole routing.
- Path and Logical addressing.
- Priority addressing.
- Group adaptive routing.

Routing Table

Port O Port 1 Port 2 Port 3 Port 4 Address Configuration Path Addressing Logical Addressing Reserved

Priority

Arbitration in Router

- Fair arbitration
- Priority based
- SpaceWire header contains address only
- Assign priority to logical addresses

	Address	Priority	Port O	Port 1	Port 2	Port 3	Port 4
Configuration	0	0	1	0	0	0	0
Path Addressing	1	0	0	1	0	0	0
	2	0	0	0	1	0	0
Logical Addressing	32	0	0	1	0	0	0
	33	1	0	1	0	0	0
	34	0	0	0	0	0	1
Reserved	255	0	0	0	0	0	0

Priority

- Node B to Node E can use any of three possible links between router X and router Y
- Shares available bandwidth
- Provides support for fault tolerance

Group Adaptive Routing

	Address	Priority	Port O	Port 1	Port 2	Port 3	Port 4
Configuration	0	0	1	0	0	0	0
Path Addressing	1	0	0	1	0	0	0
	2	0	0	0	1	0	0
Logical Addressing	32	0	0	1	1	0	0
	33	1	0	1	1	0	0
	34	0	0	0	0	1	1
Reserved	255	0	0	0	0	0	0

NODE

NODE

- Add bandwidth where required
- Add redundant links where required

Time-codes

- Low latency broadcast of time information
- 6-bit time-value
- 2 flag bits
- Can be used for:
 - Time distribution
 - Event signalling
 - Isochronous communications

Space Technology Centre University of Dundee

Nodes and Routers

- Each node or router has a 6-bit time counter
- Link interfaces have TICK_IN and TICK_OUT signals
- Asserting TICK_IN causes
 - Time counter to be incremented
 - New time-code to be transmitted
 - With value of time counter
- TICK_IN used by only one, time-master node
- When valid time-code received
 - Time counter is incremented
 - TICK_OUT is asserted

Space Technology Centre University of Dundee

Nodes and Routers

- Valid time-codes have
 - Value of one more than time-counter
 - At the receiver
- If valid
 - Set time counter to new time-code value
 - Propagate time-code
- IF NOT valid
 - Set time counter to new time-code value
 - Do NOT propagate time-code

Time-Code Latency

- Latency depends on
 - Number of links over which time-code travels
 - Operating rate of the links
 - Delay at time-code source
 - Delay at each router
 - Delay at each receiving node

SpaceWire IP

SpaceWire CODEC

- Configurable VHDL core
- Suitable for ASIC and FPGA implmentation
- Developed University of Dundee
- Distributed by ESA for European space projects
- Available from UoD for other applications
- SpaceWire Routing Switch
 - Configuratble VHDL Router
 - Generics for
 - Number for SpaceWire Ports
 - Number of External Ports
 - Developed by University of Dundee
 - Available from UoD under licence

SpaceWire Devices

- Radiation tolerant FPGA implementations
- SMCS332SpW
 - 3 SpaceWire ports
 - Interface to processor and memory
- SMCSLiteSpW
 - 1 SpaceWire port
 - Interface to peripherals
 - E.g. DAC, ADC, FIFO, UART, GPIO
- Remote Terminal Computer
 - LEON SPARC processor
 - With SpaceWire and CAN bus interfaces
- SpaceWire Router

Space Technology Centre University of Dundee

Router ASIC Technology

ASIC

- Implementation in Atmel MHR1RT gate array
- Max gate count 519 kgates (typical)
- 0.35 µm CMOS process
- Radiation tolerance
 - Up to 300 krad
 - SEU free cells to 100 MeV
 - Used for all critical memory cells
 - Latch-up immunity to 100 MeV

Space Technology Centre University of Dundee

Router ASIC Performance

- Performance
 - SpaceWire interface 200 Mbits/s
 - Low latency < 1µs
 - LVDS drivers/receivers integrated on chip

Power

- 4 W power with all links at maximum data rate
- Single 3.3 V supply
- Power saving modes
- Package
 - 196 pin ceramic Quad Flat Pack 25 mil spacing

SpaceWire Key Features

- Serial, bi-directional, full duplex
- High data rate (> 200 Mbits/s)
- Distance of 10 m +
- Low gate count
- Can be implemented in FPGAs
- Scalable
- Low error rate
- Good EMC performance
- Fault tolerant support
- Radiation tolerant components

Higher-Level Protocols

- **Remote Memory Access Protocol**
- **SMCS** Configuration Protocol **CCSDS SOIS Protocol**

RMAP

Space Technology Centre University of Dundee

- Remote Memory Access Protocol
- Provides a means of
 - Writing to
 - Reading from
 - Registers or memory on a SpaceWire node
 - Registers are considered to be memory-mapped
- Simple
- Flexible
- Encompasses diverse applications

Write Command

First byte transmitted

Destination Logical Addr.	Protocol Identifier	Packet Type, Command, Source Path Addr Len	Destination Key	
Source Logical Address	Transaction Identifier	Transaction Identifier	Extended Write Address	
Write Address (MS)	Write Address	Write Address	Write Address (LS)	
Data Length (MS)	Data Length	Data Length (LS)	Header CRC	
Data	Data	Data	Data	
Data	Data	Data	Data	
Data	Data CRC	EOP		

Last byte transmitted

Write Operation

CCSDS SOIS

Space Space Technology Centre University of Dundee

Architecture that provides:

- Uniform interface for communicating over various underlying buses
 - Scheduled
 - Asynchronous
- Comprehensive QoS for onboard applications
 - Priority
 - Reserved / non-reserved
 - Retry / try once
- Can be implemented in many different ways
- Can make use of features of underlying buses
 - E.g. retry mechanism of IEEE1394
 - E.g. group adaptive routing of SpaceWire

Denotes service access point

Conclusion

Space Technology Centre University of Dundee

- SpaceWire designed specifically for space applications
 - Low gate count
 - Low power
 - High performance
 - Standard
- IP cores available
- Devices
- Higher-level protocols