

SpaceWire use on future space systems

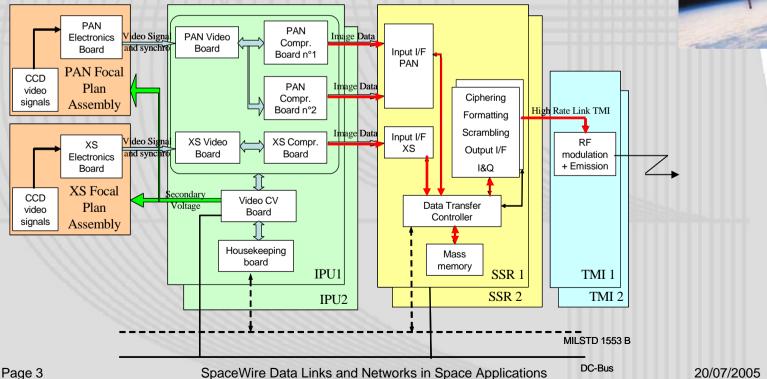
SpaceWire Working Group Meeting N°5 ISAS/JAXA, Japan - 15-17 November 2005

Olivier NOTEBAERT - Data Processing and Advanced Studies

- High speed data links on recent spacecrafts
- Needs for high speed data links
- High speed data links on future missions

SpaceWire use on future space systems

SpaceWire Working Group Meeting N°5 ISAS/JAXA, Japan - 15-17 November 2005

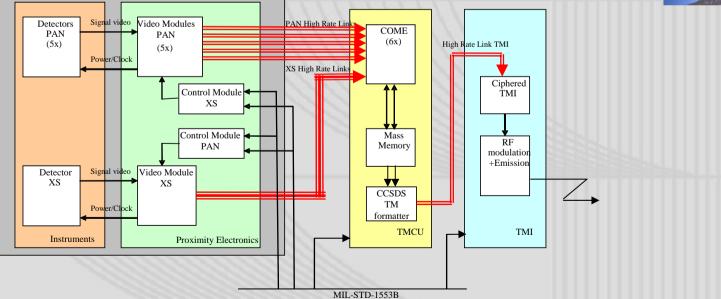

Olivier NOTEBAERT - Data Processing and Advanced Studies

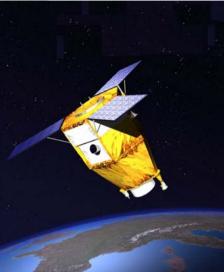
- High speed data links on recent spacecrafts
- Needs for high speed data links
- High speed data links on future missions

High speed data links on recent spacecrafts

Rocsat 2 / Theos (export)

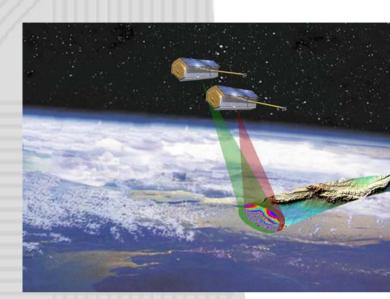
- Small/Medium size (750kg) on LEO
- Two observation instruments
 - □ Pan chromatic Telescope (10 Mpix/s ⇒ 240 Mbps digital)
 - □ Multispectral camera (5 Mpix/s ⇒ 60 Mbps digital)
- Specific high speed links for image data transmission

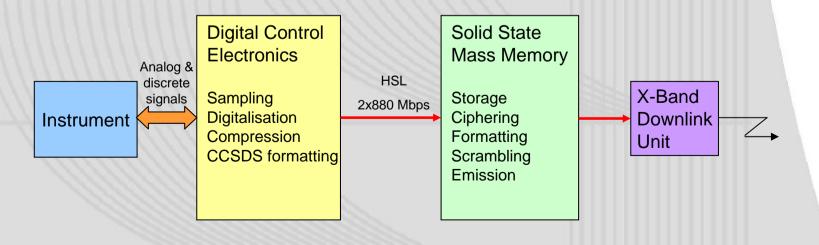




High speed data links on recent spacecrafts Pleiades (Cnes)

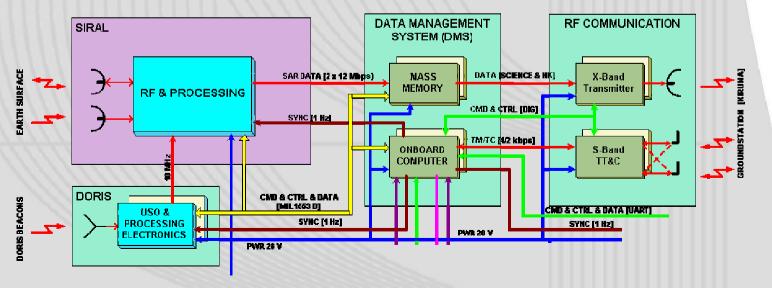
- Medium size (1500kg) on LEO
- Two observation instruments with proximity electronics for signal digitalisation
 - □ Pan chromatic Telescope (58 Mpix/s ⇒ 690 Mbps)
 - □ Multispectral camera (14 Mpix/s ⇒ 172 Mbps)
- Re-use the SPOT/Helios High Speed Links for image data transmission





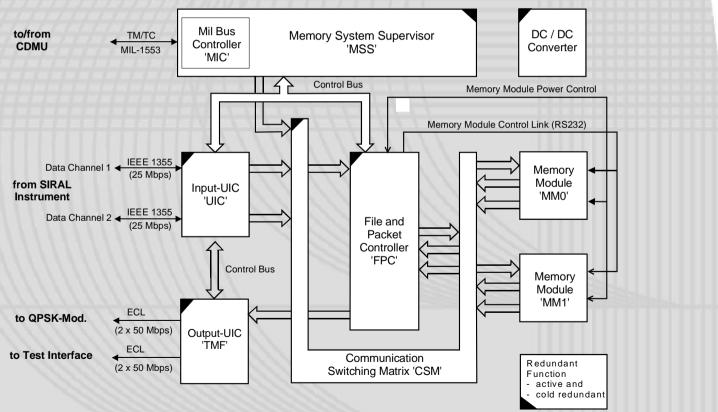
High speed data links on recent spacecrafts TerraSAR-X (DLR)

- Earth observation (DLR)
- Two spacecrafts system
- One complex instrument
 - X-Band Synthetic Aperture Radar (SAR)
 - Specific Digital Control Electronic
 - Instrument close loop control
 - P/L data processing and delivery to Solid State Mass Memory (880Mbps on G-link)


FA

High speed data links on recent spacecrafts Cryosat (ESA)

- Earth watch
- Ice thickness survey (polar orbit)
- Two instruments:
 - SIRAL: SAR/Interferometric Radar Altimeter that measures the ice elevation
 - DORIS: Doppler Orbit and Radio Positioning Integration by Satellite that allows very precise orbit determination



High speed data links on recent spacecrafts

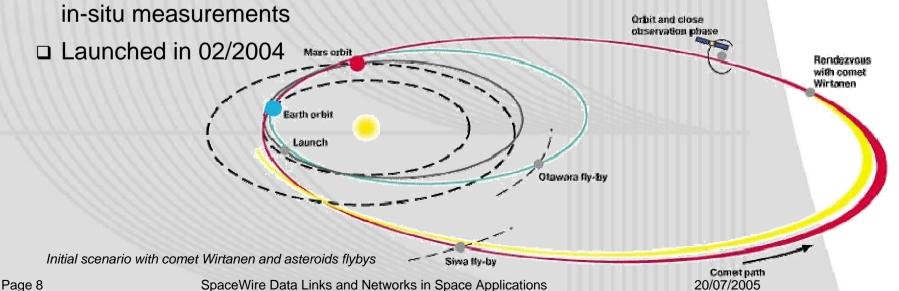
Cryosat (ESA)

File and Packet Control (FPC)

- □ Interfaces between MMS, UIC, TMF and the Memory Modules
- Controls the data flow via a Switching Matrix
- SW handling of files and packets

CryoSat Memory Module and Formatting Unit

SpaceWire Data Links and Networks in Space Applications

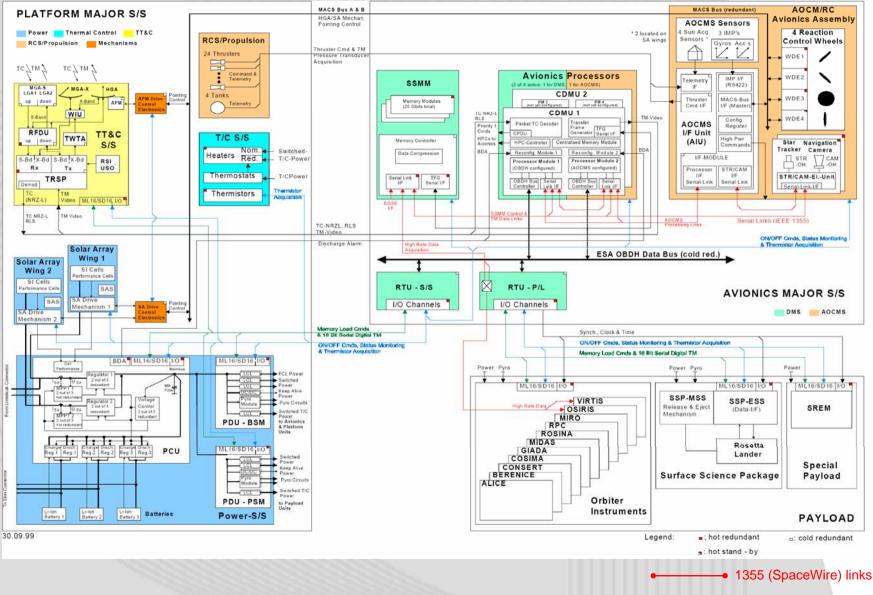


High speed data links on recent spacecrafts Rosetta (ESA)

Rosetta Mission

- 10-years long cruise toward comet 67P/Churyumov-Gerasimenko
- Fly-by at least one asteroid during the cruise phase.
- In-orbit comet scientific observations during one year down to the comet perihelion
- Land smoothly on the comet surface a Science Package (named RoLand) for in-situ measurements

High speed data links on recent spacecrafts


Rosetta: On board communications

- Standard Avionics Command Control on OBDH
- Remote Terminal Units on OBDH with discrete links to instruments (11 P/L instruments)
- IEEE 1355 serial data link between the different data processing nodes and the Solid State Mass Memory
 - 2 P/L Instruments (VIRTIS@400Kbps, OSIRIS@4Mbps)
 - Navigation camera
 - 4 Avionics processor modules (5Mbps, redounded)
 - Redounded link to Transfer Frame Generator for telemetry
- Mass memory access with File management System

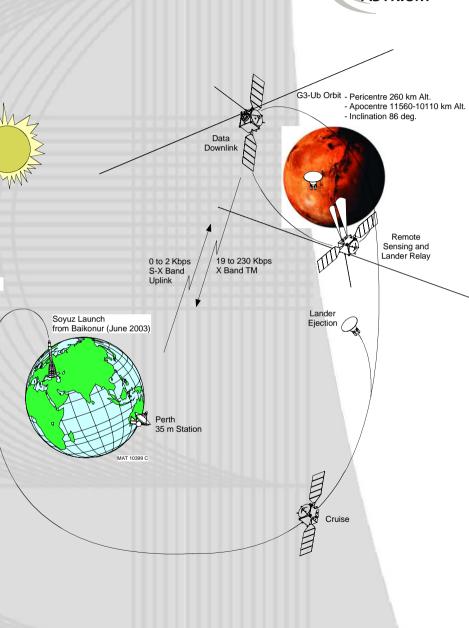
High speed data links on recent spacecrafts

Rosetta (ESA)

20/07/2005

FA

ASTRIUM


High speed data links on recent spacecrafts Mars Express (ESA)

Mars exploration

- G months cruise to Mars followed by planetary observation from orbital position
- First contribution of the European nations to Mars exploration
- High Resolution stereoscopic
 Camera producing 25Mbps of digitalised and compressed data
- Large re-uses of the Rosetta design with adaptations

High Resolution Stereoscopic Camera

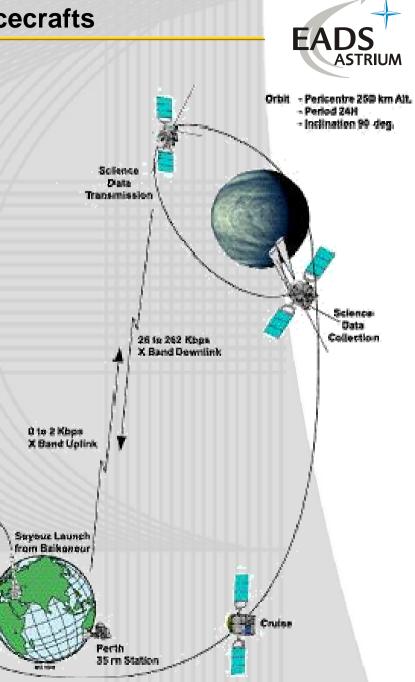
FA

SpaceWire Data Links and Networks in Space Applications

Processed image from the Mars express High Resolution Stereoscopic Camera SpaceWire Data Links and Networks in Space Applications

High speed data links on recent spacecrafts

Venus Express (ESA)


Venus Exploration

- 5 months cruise to Venus
- 5 days to manoeuvre into its operation orbit, looping around the poles of the planet
- 2 days* to study the atmosphere, the plasma environment, and the surface of Venus in great detail
- **7** Instruments

Just launched (November 9th)

Re-uses the design of Mars express with adaptations

* 2 days on Venus = 500 Earth days !

High speed data links on recent spacecrafts

Summary

Missions	Payload Data	Data links	Data rate	Number (without redundancies)	
ROCSAT 2 THEOS	300 Mbps	LVDS	300 Mbps	3 (Instruments data)	
Pleïades	860 Mbps	LVDS	200 Mbps	13 (Instruments data)	
TerraSAR-X	880 Mbps	Glink	880 Mbps	1 (SAR Instrument)	
CRYOSAT	25 Mbps	1355 (SpaceWire)	25 Mbps	1 + redundant (Siral instrument)	
Rosetta	10 Mbps	1355 (SpaceWire)	10 Mbps	2 payload instruments (VIRTIS + OSIRIS) 1 AOCS sensor (navigation camera)	
Mars Express	25 Mbps	1355 (SpaceWire)	25 Mbps	2 Payload instruments (HRSC + OMEGA) 1 AOCS sensor (StarsTracker)	
Venus Express	10 Mbps	1355 (SpaceWire)	10 Mbps	2 payload instruments (VIRTIS + VMC) 1 AOCS sensor (StarsTracker)	

SpaceWire use on future space systems

SpaceWire Working Group Meeting N°5 ISAS/JAXA, Japan - 15-17 November 2005

Olivier NOTEBAERT - Data Processing and Advanced Studies

- High speed data links on recent spacecrafts
- Needs for high speed data links
- High speed data links on future missions

The need for High Speed data-links

General trend for future missions

New missions call for new requirements

- Robotics, Autonomy, Security, formation flying...
- New instruments technology generates more on-board data (and TM rates cannot increase accordingly)
- SW development techniques raises CPU use & data volumes
- General increase of on-board data processing needs (performance, volumes and transfer rates)

Need for overall budget reductions

- Power consumption reduction
- Mass and Volume reduction
- Operational costs: reduction of the satellites dependence beside ground (i.e. mission autonomy)
- Manufacturing delay reduction (parallel development, AIT)
- □ Costs

Technology upgrade enforcing re-usable solutions

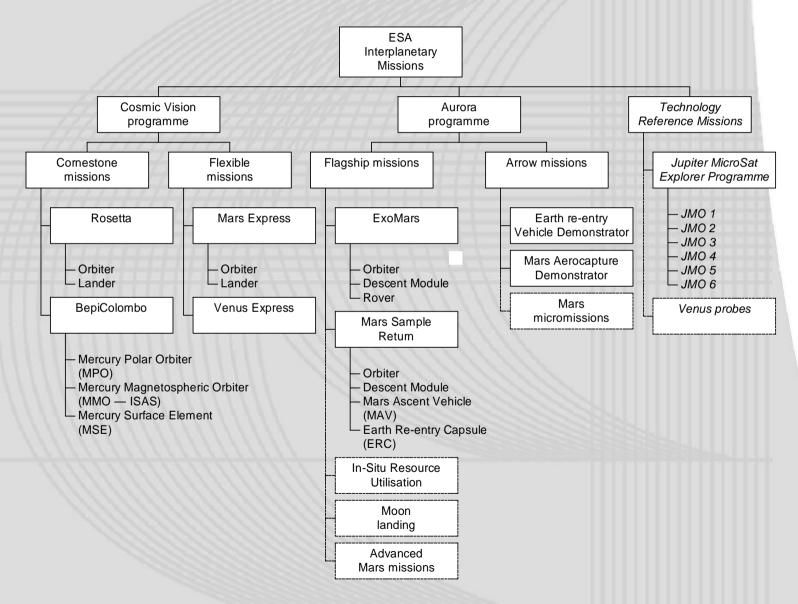
The need for High Speed data-links

Advanced studies in support to future applications

Advanced studies

Aurora Avionics Architecture System Definition (A3SysDef)

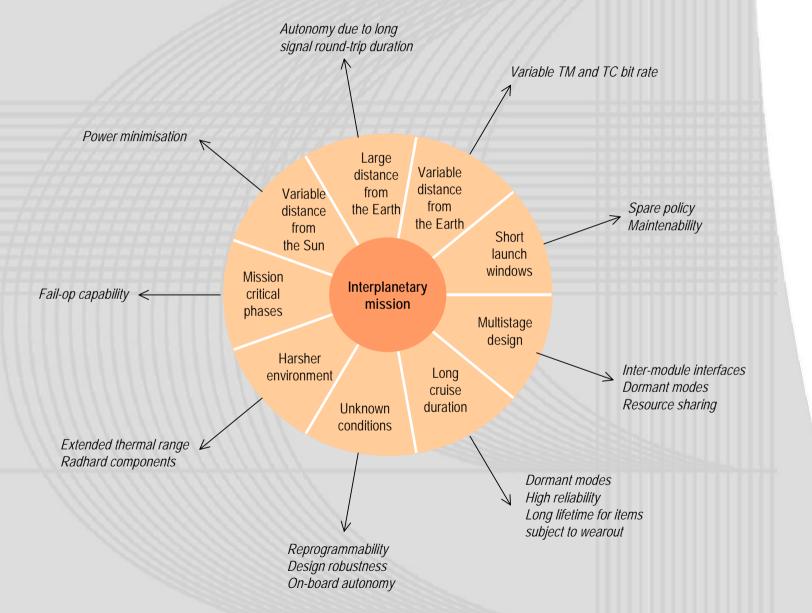
Payload Data Processing Architectures (PaDaPAr)


Generic Architecture for Mass Memory Access (GAMMA)

Distributed Core SW (DISCO)

Aurora Avionics Architecture System Definition

Context for Planetary Exploration Missions


Aurora Avionics Architecture System Definition Study Objective

- To define an avionics reference architecture suitable to support different Mars exploration missions and vehicles
 - Taking into account Bepi-Colombo pre-development assets (Highly Integrated Control and Data System-HICDS)
 - Based on a core of mission independent functions
 - Consistent with the communication standardisation (CCSDS/SOIS)
 - Able to ease the integration of new technology items during the long time frame of the Aurora Programme

Aurora Avionics Architecture System Definition

Main User Requirements & Design Drivers

Page 20

SpaceWire Data Links and Networks in Space Applications

20/07/2005

FA

ASTRIUM

Aurora Avionics Architecture System Definition

Functional Architecture and Performance Requirements

Very large scale of functions and performances

- We can define generic data processing functions
 - Communications (on-board, between spacecrafts, with ground)
 - Command and Control
 - Failure Detection Isolation and Recovery
 - Autonomy
- Need to cope with different properties...
 - Wide range of spacecrafts bus and instruments performances
 - Reliability, Availability, Safety issues
 - Operational and maintenance requirements
 - Mission profile (Technology constraints, Qualification levels...)

MODULAR ARCHITECTURE

Need for a scalable set of HW and SW building blocks interconnected on a flexible architectural system

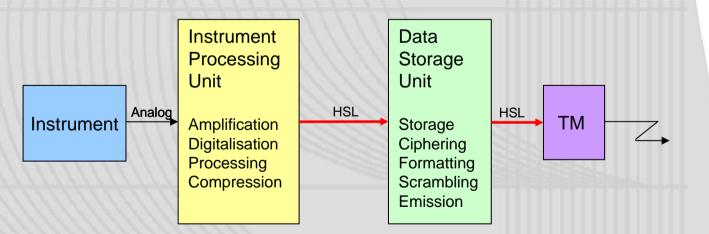
Aurora Avionics Architecture System Definition

Constraints

Harsh physical environment (Radiations, Mechanic, Thermic...)

- Induces high costs for development and qualification programs
- Mission and phase dependant (Launch, Orbital, Deep space, landing...)
- □ Limited resources in space for embedded electronics
 - Communication Link (rates and delays)
 - Power budget (electrical and propulsion)
 - Mass and volume (launch cost, life-time...)
- Fast evolution of the technologies induces obsolescence risks
- Evolution of systems needs for the development of new functions and performance range

EVOLUTIVE TECHNOLOGY


Need to focus the necessary development efforts on a limited set of standardised solutions

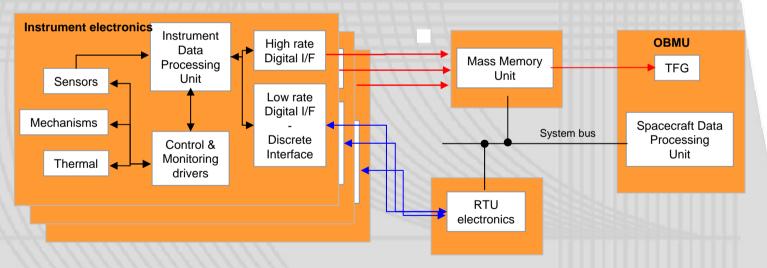
Payload data processing architecture

PaDaPAr Study overview

Study overview

- □ Functional analysis of current and future P/L architecture
- Definition of typical generic functional architecture versus instruments performance requirements
- Definition of typical building blocks (toolbox)
- Benchmark the toolbox on current/future missions

Example of a typical High Performance Instrument On-board Data communication chain

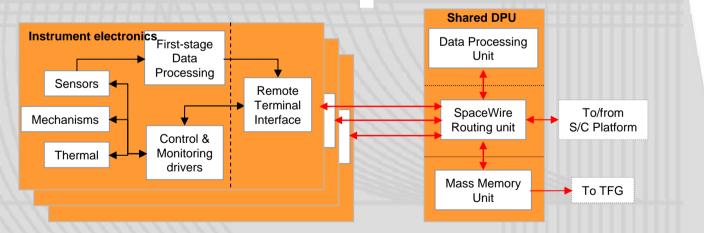

Payload data processing architectures

Modular functional architecture

Performance oriented architecture

- Independent instruments data processing units chains
- Full availability of SPW bandwidth through Direct interfaces to Mass Memory for high rate science data
- Instrument control through system bus and Remote Terminal Units (RTU)

Recommended for high data processing requirements on P/L

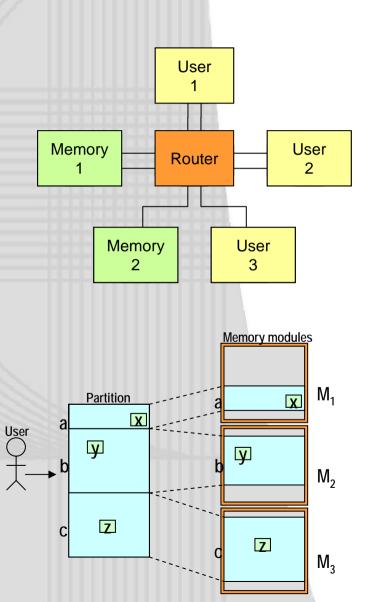

Payload data processing generic architectures

Modular functional architecture

Resource optimisation oriented architecture

- Instrument pre-processing chains connected to SpaceWire Network
- Share of common data processing functions and resources
- Lower number of nodes and links variants
- Can be combined with platform avionics resources

Recommended for multi instruments P/L and medium data processing requirements

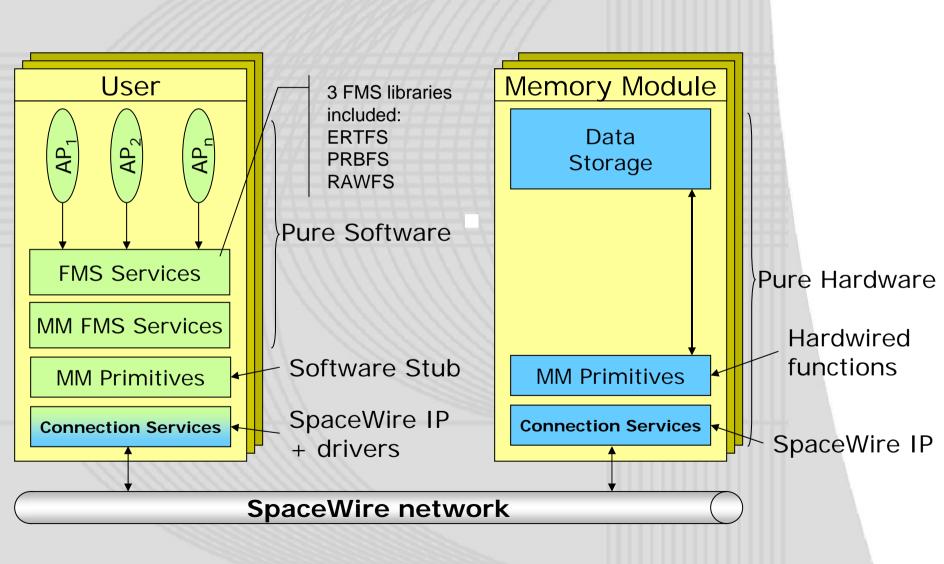

Generic Architecture for Mass Memory Access (GAMMA)

Concept overview

- Distributed architecture for data storage management
 - Several memory users (Calculators, instruments, ...)
 - Several memory modules
 - Manage concurrent data accesses
 - Protect transactions
 - Ensure data consistency

Virtual Memory Management

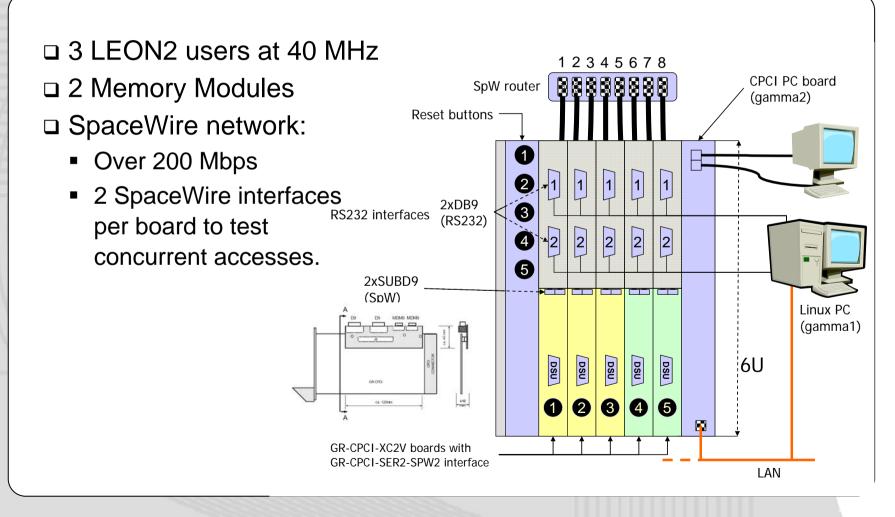
- Logical partitions can be composed of several physical storage areas.
- The memory mapping is transparent to the applications.
- \Rightarrow Increase security
- \Rightarrow Increase maintainability
- \Rightarrow Support transparent reconfiguration
- \Rightarrow Optimize performance



SpaceWire Data Links and Networks in Space Applications

Generic Architecture for Mass Memory Access (GAMMA)

EADS


GAMMA Implementation

GAMMA prototype

Demonstrator on a representative environment based on five identical commercial FPGA boards

GAMMA prototype

Demonstrator on a representative environment based on five identical commercial FPGA boards

- 3 LEON2 users at 40 MHz
 2 Memory Modules
 SpaceWire network:
 - Over 200 Mbps
 - 2 SpaceWire interfaces per board to test concurrent accesses.

Now operational at ESA/ESTEC premises

Generic Architecture for Mass Memory Access (GAMMA)

SpaceWire network data rates

Data rates result (Mbps)

Useful data rate

	link 1	link 2	link 1 to link 2	
	to link 2	to link 1	& link 2 to link 1	E
transmission rate	78,08	77,76	37,2	66,72
global board rate	156,16	155,52	207,84	

Raw data rate

	link 1 to link 2	link 2 to link 1	link 1 to link 2 & link 2 to link 1		
transmission rate	99,9424	99,5328	47,616	85,4016	
global board rate	199,8848	199,0656	266,03	266,0352	

Distributed SW application

Distributed Core Software (DISCO)

Objective

Development of a core software for complex payload requiring distributed processing

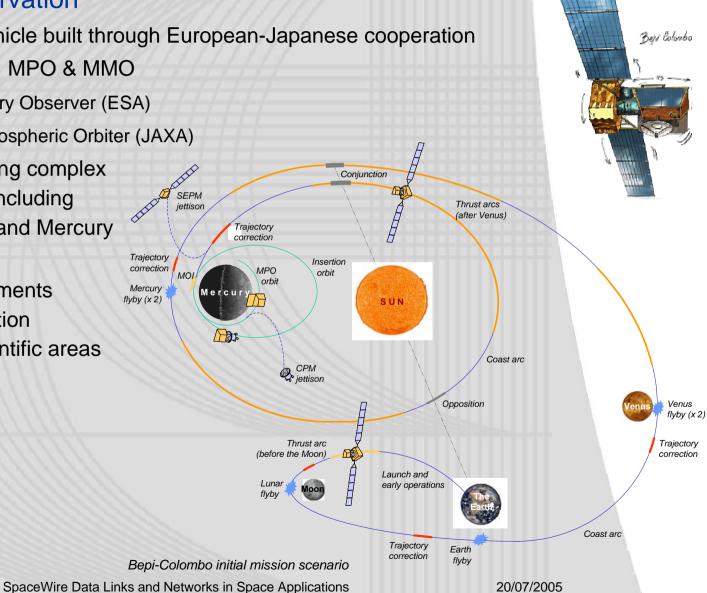
Study plan

- Analysis of future payload systems and definition of a reference mission requiring distributed processing.
- Specification and development of a Space-Oriented Middleware prototype
- Evaluation and refinement of the middleware prototype in the context of the reference mission, raising it to the level of a product.
- Implementation baseline on SpaceWire network

SpaceWire use on future space systems

SpaceWire Working Group Meeting N°5 ISAS/JAXA, Japan - 15-17 November 2005

Olivier NOTEBAERT - Data Processing and Advanced Studies


- High speed data links on recent spacecrafts
- Needs for high speed data links
- High speed data links on future missions

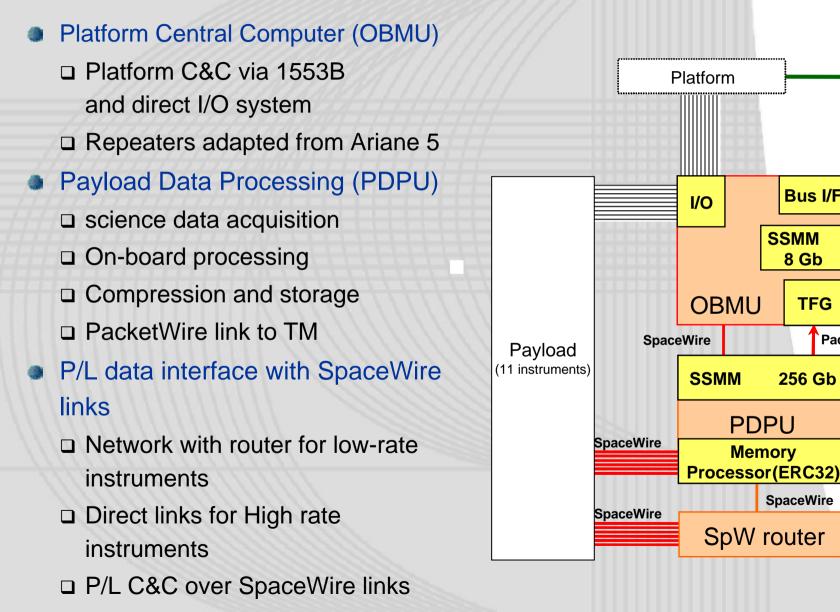
Bepi-Colombo mission characteristics

Mercury observation

- Composite vehicle built through European-Japanese cooperation
- Main Modules: MPO & MMO
 - Mercury Planetary Observer (ESA)
 - Mercury Magnetospheric Orbiter (JAXA)
- □ 5 to 6 years long complex cruise phase including Moon, Venus and Mercury Fly-by's.
- Multiple instruments for data collection in several scientific areas
- □ Launch ~2012

Bepi-Colombo mission characteristics

Key Issues for Bepi-Colombo avionics architecture


- Complex P/L which includes 11 instruments (50Mbps overall science data rate and 115Kbps C&C).
- High level of autonomy (mission and FDIR)
- Reliability of inter-modules communication links at separation time
- Centralised versus decentralised architecture
- Technology trade-off
 - SpaceWire network or direct links ?
 - P/L Command and Control dedicated links or over science data links ?
 - System on a Chip Computer core or reuse from flying and ongoing programmes ?

SpaceWire Data Links and Networks in Space Applications

Bepi-Colombo MPO proposed data links architecture

System bus (MIL -STD-1553B)

Ka-TX

PacketWire

GAIA mission characteristics and main drivers

Astronomy science mission

- Lagrangian L2 point orbital position
- Very high stability and fine pointing
- Optical instrument with high data processing capability (for science algorithms)
- Launched foreseen in 2012

Key drivers

- Modularity
- Ease of AIT & operations
- Performance of the video processing chain
- Performance of Attitude and Orbit control

Main data processing challenges

- Video processors (~1000Mips)
- On-board data reduction and storage
- High rates of data from P/L instrument

GAIA proposed data links architecture

Payload Module

- Video Processing Units (VPU)
 - Optical Data Front end processing
 - All data on SpaceWire direct links
- Payload Data Handling (PDHU)
 - science data acquisition, final, processing and storage
 - SpaceWire links to TM through CDMU internal Router
- Service Module
 - Central Distribution and Monitoring (CDMU)
 - Routing of SPW P/L science data to TM
 - Link with I/O system through SpaceWire
 - Command control
 - Avionics system through SVM 1553 bus
 - Payload through Payload 1553 bus

FA

Other future missions calling for SpaceWire networks

Mars Rover & Pasteur Payload (Exomars ~2012)

- The Rover payload (Pasteur package) integrates 8 instruments, 5 for sample observation and 3 for environment observation.
- A high level of autonomy and a large computing power for data/image compression is required for the platform.
- Sharing of resources between Pasteur and Rover is expected (computing, mass memory)

SolO (Solar Orbiter ~ 2014)

- 14 instruments foreseen with a huge volume of raw data produced
- Need for very efficient data reduction techniques as well as autonomous observation management.
- A potential late adaptation of on-board algorithms has to be considered, claiming for a flexible approach.

Bepi-Colombo initial mission scenario

High speed data links on future missions Conclusion for SpaceWire application

- SpaceWire provides a standard solution supporting the need for high data processing performance on future spacecrafts
 - Standard high speed data link for acquisition of a large range of payloads
 - Simple devices access with RMAP protocol
 - CCSDS TM/TC packet routing between intelligent terminals (e.g. complex instruments, star-trackers...)
 - Solution for on-board Network
 - Optimisation of on-board resources
 - Infrastructure for future on-board data processing performance increase
 - Contributes to the development of generic data processing architectures and Building Blocks