

CCSDS Spacecraft Onboard Interface Services

SpaceWire Working Group Meeting

Steve Parkes University of Dundee

Aims of SOIS

- Spacecraft Onboard Interface Services
- Standardise
 - Hardware
 - Software
- Encourage reuse
- Reduce cost
- Improve reliability
- More science per euro/dollar/yen...

SOIS Structure

SOIS Structure

TCONS Aims

- Common networking services
- Across several underlying buses/sub-networks
- Carry multiple network/transport/application protocols
- Time critical services
- Consistent quality of service paradigm

OBL Aims

- Define the functions needed to implement TCONS
- On each bus/sub-network
- Generic data link abstraction
- Specific definitions for specific buses/sub-networks
 - E.g. SpaceWire

TCONS/OBL Working Group

- TCONS
 - Chair: Steve Parkes
 - Deputy Chair: Jane Marquart
- OBL
 - Chair: Rick Schnurr
 - Deputy Chair: Chris Plummer
- Members
 - Greg Menke
 - Rick Schnurr
 - Max Ciccone
 - Dai Stanton
 - Maxime Perotin

SOIS Protocol Stack

- Provides common onboard application services
- Message passing service
- Time-distribution service
- Command and data acquisition service
- Possible file transfer service
 - Current thinking is that this is not needed
- Network management is a common application but will be defined by TCONS/OBL

TCONS – Inter-Network

- Multiplexing of higher level protocols
 - May be mapped to SpaceWire Protocol ID
- Quality of service
 - QoS tag used to specify what class of traffic a SDU is
 - QoS tag defines how SDU will be treated
 - as it passes through the onboard network
- Quality of service examples
 - Priority
 - Bandwidth reservation
 - Scheduled delivery

Traffic Classes

- Traffic Class;
 - A category of traffic on a sub-network distinguished by quality of service
 - For example:
 - Best effort with priority
 - Guaranteed Delivery with priority
 - Bandwidth reservation
 - Scheduled delivery
 - etc
 - Specify traffic class for each SDU via service interface
 - Map SDU into traffic classes

Redundancy

- Redundancy models:
 - equivalent data links
 - provide alternative paths
 - from a source end-point to a destination end-point
 - on a single sub-network.
- Equivalent data links may be used in one of three ways:
 - Sending data over both paths at the same time.
 - Sending over the prime link and then if there is a failure using the redundant link (Often used for MIL-STD-1553 bus).
 - Sending over either link, then if failure of one link all traffic goes over the remaining link.
- Autonomous switching between equivalent data links supported.
- Controlled using management parameters associated with a traffic class.
- System management policy might dictate a uniform redundancy policy which applications must use.
- The link redundancy function is bus/sub-network specific.

- Retry function provides mechanism for
 - Resending PDUs
 - Not received correctly at the other end of the data link.
- When the source sends a PDU it starts a timer.
- When PDU arrives at the destination an acknowledgement is returned to the source.
- If source does not receive acknowledgement before timer times-out
 - Then PDU is assumed not to have arrived at the destination
 - Source resends the PDU.
- If multiple copies of the same PDU arrive at the destination
 - Then any duplicates are discarded.
- Currently LLC is being investigated as a basis for the SOIS retry function.
- Link Redundancy is Bus/sub-network specific.

Scheduling

- Delivery of PDUs according to a predefined schedule.
- May be used
 - to support deterministic data delivery
 - to reserve bus/sub-network bandwidth
- Scheduling function splits up the bandwidth on a bus/sub-network using time division multiplexing.
- A number of equal duration time-slices are determined.
- During a time-slice one end-point can send one or more PDUs
 - provided that they do not exceed the duration of the time-slot.
- If retry is to be supported in a particular time-slot
 - then the PDU length must be short enough to allow the maximum number of retries within a single slot.
- Time-slots repeat cyclically with a repetition interval known as an epoch.
- Knowledge about the communication schedule held in each endpoint
- So that they know when (i.e. in which time-slot) they are allowed to transmit data.
- If a bus/sub-network supports broadcast
 - the PDU sent in one slot many be received by one, several or all endpoints on the sub-network.

Fragmentation

- Fragmentation is needed
 - If the underlying bus/sub-network cannot support maximum PDU size
 - in a single packet on the bus/sub-network
 - Or if the largest PDU will not fit in the allocated time slots.
- Data link's responsibility
 - To fragment PDUs if necessary
 - To reassemble them at the other end of the data link
 - To reform the original PDUs before they are passed up to the internetwork layer.
- Buses/sub-networks that can support the maximum PDU size in a single packet need not do fragmentation.
- Assuming the maximum PDU is compatible with schedule table requirements.
- The Fragmentation function is Bus/sub-network specific.

Address Translation

- In general each OBL has its own private address space.
- SOIS will support two classes of OBL
 - Non-route through OBL
 - IP source and destination addresses are mapped onto an OBL address space
 - Knowledge of the original IP address is lost,
 - Route through OBL
 - Original IP source and destination address is either transmitted
 - Or mapped in a recoverable way to the OBL address space.
- Address translation translates between network address and OBL address space.
- The Address translation function is Bus/sub-network specific.

Current Status

- TCONS/OBL architecture defined
- QoS and Traffic class document being written
- TCONS service interfaces
 - Inter-network being defined
 - Intra-network being defined
- OBL
 - Generic data link interface being defined
 - Concurrent work on mapping
 - To SpaceWire
 - To Ethernet

Planned Work

- Plan to have
 - Architecture white paper
 - Quality of Service white paper
 - Draft intra-network service red book
 - Draft inter-network service red book
- By September meeting in Atlanta
- Meeting will consolidate this work
- Then focus on network management
- And example bus mappings
 - SpaceWire
 - Ethernet
 - Others