

Video Processing Chain VPC2 SpaceWire Networking Protocol Meeting 4

19-20-21 July 2005

Page 1 SpaceWire Networking Protocol Meeting 4 – 19-20-21 July 2005 - ESTEC

Summary

- VPC2 and SPADA_RT Activity
- VPC2 Architecture Data Exchange
- VPC2 RMAP
- Implementation Issue
- FPGA Implementation Issue
- Expected Performances Issues

VPC2 Activity

- The VPC2 is dedicated to earth observation science mission.
- It shall provide fully characterized and standardized ready to use functions to interface electro-optical detector in one end and a standardized SpaceWire network on the other end.
- Main motivation of the VPC2 development is to reduce development effort following the mission requirement without impacting performances:
 - Analog treatment supported by a general ASIC (SPADA_RT).
 - External ADC and DAC.
 - Fully autonomous running during image acquisition.
 - Fully standard network and protocol (SpaceWire / RMAP)

VPC2 Activity : General block diagram

→Separate detector dependent and independent parts.

Page 4 SpaceWire Networking Protocol Meeting 4 – 19-20-21 July 2005 - ESTEC

VPC2 Activity : Performances

Parameter	Objective	Remark		
Pixel frequency	100KHz / 3MHz	100KHz of granularity		
Accuracy	14 bits	/		
ENOB	≥ 12	At maximum gain		
Missing codes	None			
Differential non linearity	± 0.5LSB of 12bits			
Integral non linearity	± 1LSB of 12bits			
Basic video signal	Differential input.			
processing	DC restore (CCD case) or direct			
	coupling (APS & HgCdTe)			
///////////////////////////////////////	CDS (CCD detector) or single			
	sampling (HgCdTe detector)			
THHIKAA	Programmable gain.			
	Offset correction.			
Gain span	From 1V/V to 8V/V			
Gain granularity	1V/V			
Number of detector input	\geq 2 (3 as objective)	Each input is read sequentially		
Number of house keeping	4			
I/O control	Space wire			
	> 2V			
Gain error	<1%			
Gain stability	<400ppm	On the complete thermal range		
Offset error	<125ppm	Defined for the maximum		
		output range		
Offset stability	<125ppm	On the complete thermal range		
Power consumption	1.7W	Detector independent part		
Operational temperature	0°C / 30°C			
range				
TID	30KRad			
Latch-up threshold	>70Mev/mg.cm ²			
Effective LET	<1E-7	At saturation level		

SPADA_RT

- The SPADA_RT (Signal Processing ASIC for Detector Array _Radiation Tolerant) ASIC is an analog front end, dedicated to CCD or APS detector.
- This project has been initiated after a first VPC contract during which a first SPADA ASIC was developed but not manufactured due to technology disappearance (DMILL). Several performances have been improved.
- Technology chosen shall be a commercial European one. Thus the SPADA_RT development includes hardening tasks.

SPADA_RT functional specifications

- The SPADA_RT ASIC contains all facilities to:
 - Performs analog treatment needed by CCD or APS detector (2 inputs):
 - · CDS or single sampling.
 - · DC restore (CLAMP at line frequency)
 - · Offset injection.
 - · Sample and hold.
 - Variable gain (from 1V/V to 8V/V)
 - Ensure buffering of 4 house keeping signals.
 - Be inserted in a multiplexing architecture (analog three state).
- The SPADA_RT is optimized to be used within the VPC2 chain, SpaceWire detector module.

SPADA_RT preliminary block diagram

Page 8 SpaceWire Networking Protocol Meeting 4 – 19-20-21 July 2005 - ESTEC

VPC2 Architecture Data Exchange

- Data organization reflect the hardware one: three independent sequencing level:
 - SpaceWire sequencer.
 - VPC2 sequencer.
 - Detector sequencer.
- Once again, our approach is to propose modules, ready to use and easy to modify without impacting the others.
- All inputs and outputs data uses the same SpaceWire link.

VPC2 Architecture Data Exchange: Characteristics

- Spacewire ECSS-E-50-12A
- ESA IP core (UoD)
- RMAP protocol
- Spacewire and VPC2 baseline 100 Mbits/s (up to 200 Mbits/s)
- Configuration of VPC2 registers
- Store video samples in memory (ICU Test bench)
- No embedded processor

Page 10 SpaceWire Networking Protocol Meeting 4 – 19-20-21 July 2005 - ESTEC

VPC2 Architecture Data Exchange : Overview

VPC2 SPACEWIRE RMAP:

- Remote Memory Access Protocol : ECSS-E-50-12 Part 2 Draft C 29/03/2005
- ESA IP SPACEWIRE core from UoD
- RMAP core development from EADS SODERN (bridge between Spacewire world and VPC2 world)
- All VPC2 registers and picture acquisition are programmable via SPACEWIRE
- VPC2 writes video samples in RMAP command format directly towards ICU
- RMAP Error management
- All RMAP command supported except Read-Modify-Write

Implementation Issue : FPGA Choice and Hardware Information

- VPC2 requirements :
 - Military or space components => ACTEL
 - Reprogrammable => ACTEL PROASIC (Roadmap ACTEL on Rad Tolerant PROASIC3E RTPA3/E)
- Area Sparing : No configuration Prom
- ESA IP with ACTEL PROASIC : 100 Mhz on TX clock (limited by ESA IP TX state machine complexity and Actel PROASIC Architecture)
- Driver LVDS : High bandwidth (from AEROFLEX)
- Clocks : Internal PLL used or external AEROFLEX RADCLOCK
- VHDL development

Page 13SpaceWire Networking Protocol Meeting 4 – 19-20-21 July 2005 - ESTEC

Implementation Issue : Test Bench

- Operating system : Windows XP
- Testbench SpW adapter : SPACEWIRE/USB brick from Star Dundee
- Protocol : SPACEWIRE RMAP
- Mission : validate the digital part of VPC2 board, ICU emulator
- Store Video sample and generate result files
- Housekeeping data storage (temperatures, voltages)
- Error checking
- Time code handling
- Page 14 SpaceWire Networking Protocol Meeting 4 19-20-21 July 2005 ESTEC

Implementation Issue : Test Bench Overview

FPGA Implementation Issue : Logic Gates

- IP ESA + RMAP in different technology *:
- ACTEL ProaASIC3E A3PE600
- ACTEL ProaAsic Plus APA300

: 2987 tiles (30 %) : 4613 tiles (56%)

*: synthesis result with Leonardo Spectrum

FPGA Implementation Issue : CRC

- CRC implemented in Hardware
- Based on : IEEE A symbol Base Algorithm for Hardware
 Implementation of Cyclic Redundancy Check (CRC) Rajesh Nair, Gerry Ryan and

Farivar Farzaneh

- <u>Results :</u>
- ACTEL PROASIC plus APA300 : 82 gates (167 Mhz)
 ACTEL RTAX1000 : 93 gates (116 Mhz)

Expected Performances Issues : Network Load

Full Acquisition							
Useful pixels	12000	12000	12000	12000	12000		
ADC Conversion time, Pixel period (ns)	MAX SPEED 330	660	1000	5000	10000		
Header RMAP size (bytes)	16	16	16	16	16		
Video data Paquet size (bytes)	256	256	256	256	256		
SpaceWire coding(bits)	10	10	10	10	10		
End of paquet (bits)	4	4	4	4	4		
SpaceWire Link (Mbit/s)	100	100	100	100	100		
total bits to send	5284	5284	5284	5284	5284		
Nb of paquets by second	18925	18925	18925	18925,	18925,		
Pixel rate (Msample/s)	4,84	4,84	4,84	4,84	4,84		
VPC2 Complete Useful acquisition in (ms)	3,96	7,92	12	60	120		
paquet duration (without RMAP header) in us	84,48	168,96	256	1280	2560		
video data Paquet duration on SPaceWIRE in us	52,84	52,84	52,84	52,84	52,84		
SpaceWire Network charge (%)	62,54*	31,27	20,64	4,12	2,06		

* : at 200Mbits/S the Network Load becomes 31.2%

Page 18 SpaceWire Networking Protocol Meeting 4 – 19-20-21 July 2005 - ESTEC

Expected Performances Issues : Frequencies

•	IP ESA + RMAP in different technology *:			
		Sys	Rx	Tx
•	ACTEL ProaASIC3E A3PE600	: 135	347	143
•	ACTEL ProaAsic Plus APA300	: 57	120	115
•	ACTEL RTAX1000	: 54	170	105

*: synthesis result in MHz, SDR

Page 19 SpaceWire Networking Protocol Meeting 4 – 19-20-21 July 2005 - ESTEC

Conclusion

- VPC2 is a very versatile video chain with a specific analog Rad tolerant ASIC
- SpaceWire RMAP gives secure and adaptable data exchange for video processing chain
- SpaceWire RMAP is easy to implement in Hardware with no need of using embedded processor.