
This document or software is confidential to Saab Ericsson Space and may not:

a) be used for any purpose other than for which it was supplied;
b) be copied or reproduced in whole or in part without the prior written consent of Saab
Ericsson Space;
c) be disclosed to any third party without the prior written consent of Saab Ericsson Space.

1

SpaceWire
RMAP checksum calculation

Torbjörn Hult
19 July 2005

This document or software is confidential to Saab Ericsson Space and may not:

a) be used for any purpose other than for which it was supplied;
b) be copied or reproduced in whole or in part without the prior written consent of Saab
Ericsson Space;
c) be disclosed to any third party without the prior written consent of Saab Ericsson Space.

2

Checksum type?

• CRC or longitudinal parity?

• Remember that SpaceWire already has byte
parity!

• If CRC selected the algorithm and
implementation must be specified

• Polynomial: g(x) = x8 + x2 + x1 + 1

This document or software is confidential to Saab Ericsson Space and may not:

a) be used for any purpose other than for which it was supplied;
b) be copied or reproduced in whole or in part without the prior written consent of Saab
Ericsson Space;
c) be disclosed to any third party without the prior written consent of Saab Ericsson Space.

3

Fibonacci implementation

76543210

X^8X^7X^3 X^4 X^5 X^6X^2X^1X^0
+

Ser
In

D7D6D5D4D3D2D1D0

Parallel Out
(after 8 shifts)

+ +

Ser
Out

• Forward CRC

This document or software is confidential to Saab Ericsson Space and may not:

a) be used for any purpose other than for which it was supplied;
b) be copied or reproduced in whole or in part without the prior written consent of Saab
Ericsson Space;
c) be disclosed to any third party without the prior written consent of Saab Ericsson Space.

4

Galois implementation

• Reverse CRC

• Produces zero result if a checksum is summed with itself

• Note the byte order numbering based on bit 0 (LSB) entered first

76543210

X^8X^7X^3 X^4 X^5 X^6X^2X^1X^0

Ser
Out

+

++

Ser
In

D0D1D2D3D4D5D6D7

Parallel Out
(after 8 shifts)

This document or software is confidential to Saab Ericsson Space and may not:

a) be used for any purpose other than for which it was supplied;
b) be copied or reproduced in whole or in part without the prior written consent of Saab
Ericsson Space;
c) be disclosed to any third party without the prior written consent of Saab Ericsson Space.

5

Galois implementation, VHDL code
--
-- Purpose : Generate CRC checksum function
--
-- A is the input byte
-- StartValue is the accumulated CRC checksum
--
function CRC8(A : Byte_T; StartValue : Byte_T) return Byte_T is
 variable NextStart : Byte_T;
 variable CRCloop : std_ulogic;
 begin
 NextStart := StartValue;

 for I in 0 to 7 loop -- For serial transfer with LSB first(SPW)
 CRCloop := NextStart(0) xor A(I);
 NextStart := CRCloop &
 NextStart(7) xor CRCloop &
 NextStart(6) xor CRCloop &
 NextStart(5 downto 1);
 end loop;
 return NextStart; -- CRC checksum
 end function;

	Checksum type?
	Fibonacci implementation
	Galois implementation
	Galois implementation, VHDL code

