SpaceFibre

Martin Suess (TOS-EDP), Iain McKenzie (TOS-MME) martin.suess@esa.int, iain.mckenzie@esa.int ESA-ESTEC, 2200AG Noordwijk, The Netherlands

SpaceWire WG Meeting 4

Martin Suess/lain McKenzie

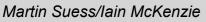
Overview

- SpaceFibre Requirements
- Mixed SpaceWire SpaceFibre networks
- Optical Link Technologies
- Demonstrator Development
- □ Conclusion

SpaceWire WG Meeting 4

Martin Suess/Iain McKenzie

Need for extension of SpaceWire


□ SpaceWire link data rate is currently 200Mb/s

- High Resolution SAR, Hyper Spectral Imagers, High Speed High Resolution Cameras, Telecommunication Payloads produce data at a rate of some to several Gb/s
- SpaceWire based solution would required bundling of several links
- Results in higher system complexity and mass penalty

□ Corresponding SpaceWire link maximum cable length is 10m

- Limitation of data rate and cable length due to jitter and skew between on Data and Strobe signal
- In general sufficient for on satellite applications
- Other applications like Launchers, Space Station and EGSEs for ground testing require longer cable length
- □ SpaceWire does not provide galvanic isolation
 - Often EMC requirement for connections between electronic boxes
 - Enables easier system integration on spacecraft level
 - Characteristic required for Ground Support Equipment

SpaceWire WG Meeting 4

SpaceFibre Requirements

- **Provide symmetrical, bi-directional, point to point link connection**
- □ Handle data rates 1-10Gb/s and support variable signalling rates
- **Bridge distances up to 100m at maximum data rate**
- Be based on fibre optic link technology
 - Provides galvanic isolation
 - Copper version with AC coupling for shorter distances
- Allow for mixed SpaceWire SpaceFibre networks via special SpaceWire-SpaceFibre Routers
- **Transmit a scalable number of virtual SpaceWire links over one SpaceFibre**
- Compliant to the protocols and routing mechanisms defined in the SpaceWire standard
- □ Similar bit error rates as specified for SpaceWire
- □ Fast start up and fine grained power management
- □ Intrinsic support to quality of service

SpaceWire WG Meeting 4

Martin Suess/Iain McKenzie E

SpaceFibre Project

Two Parallel Contracts

"Optical Links for the Space Wire Intra Satellite Network Standard"
 GSTP Program

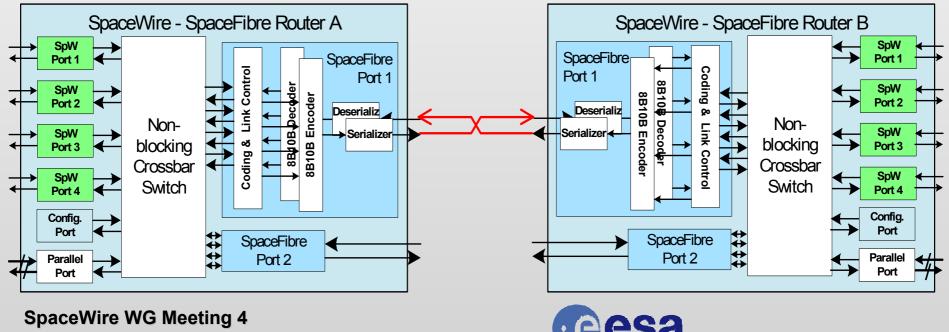
- Objective: The development of a high speed point to point fibre optic link for space applications.
- Contractors: Patria (Prime), VTT, INO, Fibre Pulse, W.L. Gore
- "Space Fibre" The TOPNET Call Off No. 2

TRP Program

Objective: The integration of very high speed data links into the Space Wire network through the development of a high speed router.

Contractor: University of Dundee

Delivery of demonstrator scheduled for May 2006


SpaceWire WG Meeting 4

esa____

Martin Suess/Iain McKenzie

Mixed SpaceWire – SpaceFibre Router & Networks

- Transfer speed in network is determined by slowest link on the path
- □ SpaceFibre must not be slowed down by SpaceWire Link in network
- □ Concept: Several virtual SpaceWire Links over one SpaceFibre
 - Multiplexing of data streams is required
 - This can be performed on character or frame level
 - Frame level multiplexing provides a higher level of flexibility

Martin Suess/Iain McKenzie

SpaceFibre CODEC

- **A number of high speed serial link standards have been reviewed**
 - Fibre Channel, Serial ATA, PCI Express, Infiniband, Gigabit Ethernet, Hypertransport
- Proposed solution must ensure compliance with SpaceWire protocols and routing mechanisms
- **Features commonly found in the reviewed standards:**
 - 8B/10B Encoding
 - DC balanced enabling AC coupling
 - Transition rich enabling clock recovery with PLL
 - Comma sequence enabling character alignment
 - Unused codes and disparity can be used to help detect errors
 - RX Elastic Buffer
 - Compensates slight differences in clock speed between units
 - Scrambling
 - Spread spectrum signal to reduce EM emission of copper version
- Prototype will be implemented in Xilinx Virtex II Pro using the Rocket IO interface – CLM serial digital interface

SpaceWire WG Meeting 4

Martin Suess/lain McKenzie ESTEC 19-20 July 2005 slide: 7

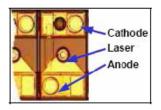
Space Fibre Optical Link

Optoelectronic Module

Optoelectronic Module

SpaceWire WG Meeting 4

Martin Suess/Iain McKenzie



Technology Choices - Emitter

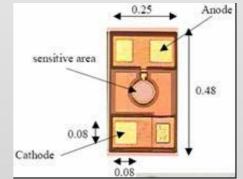
Emitter	Modulation rate	Spectral width	Divergence	Optical power
LED	\leq 622 Mbps	~ 50 nm	large	0.1 mW
FP LD	≤ 10 Gbps	5 nm, multiple lines	asymmetric	2 to 100 mW
DFB/DBR LD	\leq 10 Gbps	10 MHz, single line	asymmetric	2 to 20 mW
VCSEL	≤ 10 Gbps	0.1 nm	10 20°	0.5 2 mW

- LEDs are too slow for multi-gigabit data transmission.
- 10 Gbps @ 100 m => there is no need to use DFB or DBR lasers.
- The best candidates are 850-nm VCSEL and 1310-nm Fabry-Perot laser. (1300-nm VCSELs are emerging, but their reliability is not proven yet.)

GsAs VCSEL - ULM Photonics (Laser Driver from Helix) 850nm Operating Wavelength, Bandwidth 6GHz

SpaceWire WG Meeting 4

Martin Suess/lain McKenzie



Technology Choices - Detector

- Simple pn-junction diodes are too slow for gigabit applications.
- Avalanche photodiode (APD) requires high bias voltage (30...200 V) and is temperature sensitive.
- Metal-semiconductor-metal (MSM) detectors are excellent devices but few vendors exist.
- Best option is either GaAs or InGaAs PIN photodiode.

GaAs PIN Diode – Ulm Photonics (Matched TIA Ohmic and Limiting Amplifier Maxim)

850nm Operating Wavelength, Bandwidth 5GHz

SpaceWire WG Meeting 4

Martin Suess/Iain McKenzie

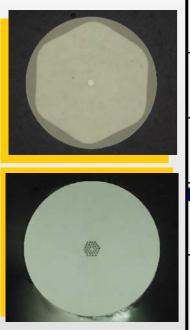
Technology Choices – Fibre Connector

AVIM Connector (Diamond)

Has proven space herritage: Hubble Space Telescope, NASA Optical Intersatellite Link, NASA Atmospheric Dynamics Mission. Is also to be used on SMOS and ATV.

Qualified: Vibration 50g RMS Temperature Cycling: –40 - +85 Deg.C

Special Locking Mechanism to prevent it decoupling during vibration.

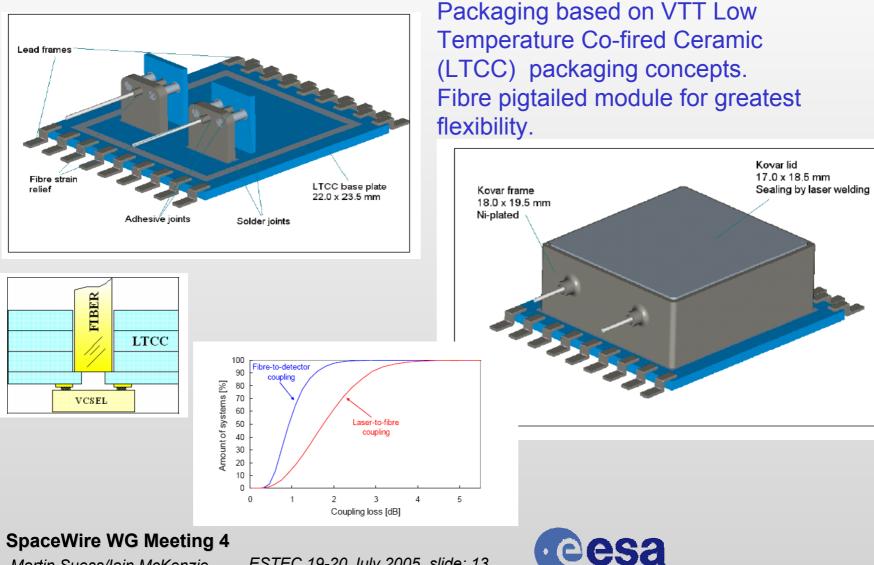


SpaceWire WG Meeting 4

Martin Suess/lain McKenzie

Technology Choices – Optical Fibre

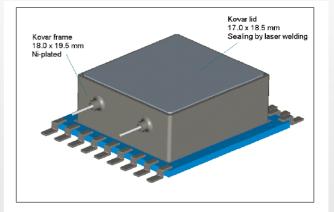
Fibre Type	Advantages	Disadvantages	
Single Mode Fibre	 High bandwidth (>10Gbps) 	 Small coupling aperture 	
9/125 micron	 Radiation hard versions available 	 Low tolerance to misalignment 	
Multimode Step Index	 Large coupling aperture 	- Insufficient bandwidth (few 100MHz over 100m)	
50/125 micron	- Radiation hard versions available		
Multimode Graded Index	 Large coupling aperture 	 Radiation induced attenuation is 	
50/125 micron	- High Bandwidth (upto 10Gbps over 100m)	higher (particularly at shorter wavelengths ~850nm)	
Micro Structured Fibre	 Excellent radiation resistance 	 Still relatively immature technology very expensive. 	
50/125 micron	 MM version has large coupling aperture 		


- Graded index multi-mode optical fibre (50/125 micrometer) Corning
 - having an acrylate coating
 - and protected by a Gore-Tex jacket

SpaceWire WG Meeting 4

Martin Suess/Iain McKenzie

VTT Optoelectronic Packaging


Martin Suess/Jain McKenzie

Optoelectronic Module Performance

- Dimensions 22 x 23.5 x 7 mm
- □ Mass <5g
- □ Power Consumption (5Gbps and 3.3V)
 - Tx only 300mW
 - Rx only 120mW
 - Total power consumption 420mW

Optical Characteristics

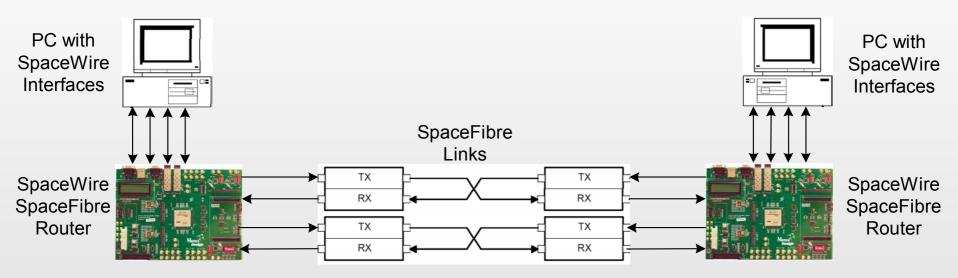
Tx average output Nominal Coupling Loss Laser-Fibre Nominal Coupling Loss Fibre-Receiver Required receiver power for BER 10⁻¹² Required receiver power for BER 10⁻¹⁵ Link Budget Margin at BER 10⁻¹²

3 dBm 1 dB 0.5 dB -25.4 dBm -24.5 dBm 27 dB

SpaceWire WG Meeting 4

Martin Suess/Iain McKenzie

Space Environmental Testing


- Random Vibration up to 20...25 g rms
- Shock Testing up to 2000g at 10kHz (2 times per axis)
- Thermal Cycling:
 - -40°C ... +85°C (operational at least 8 cycles)
- Material Outgassing:
 - Total Mass Loss after 24 hours at 125°C and 0.13 mPa : < 1.00%
 - Collected Volatile Condensable Material, collected for 24 hours on an adjacent plate at 25°C: < 0.10%
- Radiation Testing Gamma
 - Total Dose 100 krads optical fibre
 - Optoelectronic module up to 50 krads
- Radiation Testing Single Event Effects
 - Heavy Ion Testing (different energy levels up to 30MeV)

SpaceWire WG Meeting 4

Martin Suess/lain McKenzie

SpaceWire-SpaceFibre Demonstrator

- University of Dundee:
 - SpaceWire-SpaceFibre Routers
- **D** Patria:
 - SpaceWire Interfaces
 - Fibre Optic Interfaces for Routers
 - Fibre Optic and SpaceWire Cables
- Target performance for demonstrator
 - 2.5 Gbits/s gross data rate in each direction on SpaceFibre link

SpaceWire WG Meeting 4

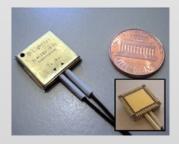
Martin Suess/Iain McKenzie

High speed COTS Options

Products Developed for Space Applications in US

- Space Photonics
 - 12 channel transmitter and receiver pairs
 - 12 fibre ribbon cable
 - 1300 nm FP laser arrays
 - 2.5 Gbps bandwidth/Channel
- Peregrine Quad Transceivers
 - 4 x 850 nm VCSEL, 4 x PIN Diodes
 - 12 fibre ribbon cable
 - 3.125 Gbps, 125mW/Channel

Products Developed for Terrestrial Applications


- D-Lightsys (Thales R&D)
 - Single transceiver channel, VCSEL 850nm
 - 2.5Gbps, 350mW total power

SpaceWire WG Meeting 4

Martin Suess/Iain McKenzie

Conclusions

- □ SpaceFibre shall be a fibre optical extension of SpaceWire
- System requirements were presented
- Optical technology trade-offs were shown and will be verified during environmental testing
- A demonstrator will be developed within the SpaceFibre activity (May 2006) to demonstrate a mixed SpaceWire – SpaceFibre network
- Once consolidated the development of dedicated electronic components can be started
- Low mass, low power optical transceivers designed for harsh environments are becoming more widely available
- **Standardisation should be initiated in the SpaceWire Working Group**

SpaceWire WG Meeting 4

Martin Suess/Jain McKenzie

