

Data Links and Networks in Space Applications – SpaceWire usage

SpaceWire 4th Workshop, ESTEC, July 2005 Olivier Notebaert - Data Processing and SW advanced studies

SUMMARY

On-board data communications context

- Space Systems Constraints and Requirements
- Data Processing Functions and Trends
- Trade-offs
- Data processing architectures

Usage of SpaceWire in space applications

- Current usage of high speed data links
- Advanced data processing architecture studies
- Issues for best usage of SpaceWire networks

Conclusion

DATA COMMUNICATIONS CONTEXT Space Systems Constraints

- Harsh environment
 - Radiations | Vibrations | Shocks | Thermal effects...
 - Induces high costs for development and qualification programs
 - Mission and phase dependant (launch | Low Earth Orbit | Geostationary | Deep space...)
 - Limited resources in space for embedded electronics
 - Communication Link
 - Availability and delays of ground/spacecraft communications
 - This induces on-board data-handling support functions (data compression, storage, retrieval, autonomous monitoring and control...)
 - Power budget is strictly limited (electrical and propulsion)
 - Mass and volume needs to be minimized (launch cost, life-time...)

Reduced choice of electronic components and available technologies

Need for concentrating the development efforts on a limited set of standardized and perennial solutions

DATA COMMUNICATIONS CONTEXT Space Systems Requirements

- Mission dependant systems requirements
 - Command and Control
 - Failure Detection Isolation and Recovery
 - Performances of spacecrafts bus and instruments
 - Reliability
 - Availability
 - Safety
 - Operational and maintenance requirements
 - Qualification levels

Various range of requirements induces numerous specific solutions for the Data Processing Systems architecture and products

Need for flexible generic architectures based on a limited set of common HW and SW building blocks

DATA COMMUNICATIONS CONTEXT Data processing functions and trends

- P/L Science data cannot be downlinked at acquisition rate
 - Increasing need for high performance on-board data processing (e.g. compression, formatting, filtering...)
 - Increasing need for high capacity on board data storage
- Several independent instruments on a same spacecraft
 - With high rate data links
 - With low rate command and control
- Telecommunication data switching requires higher performance dynamic control (for e.g. telephone, internet...)
- Growing need for on-board intelligence (AOCS, camera, radar, robotics, navigation...) resulting in data rate increase
- TM/TC and on-board data require increased security functions

DATA COMMUNICATIONS CONTEXT Trade-offs

- Critical trade-off in the implementation of space systems
 - Technologies adaptation to environmental constraints
 - Quality of payload data
 - On-board processing performance
 - Data transmission delays and synchronisation of distant units
 - Redundancies of elements and data links
 - Power consumption, Overall Weight/length of cables
 - Overall cost ...
- Efficiency of the data links solutions depend on the systems priorities and of the nature of the transmitted data
 - This results in several types of data links
 - Command and control buses (OBDH, 1553, Can)
 - Point to point serial data links (RS232, RS422, 1355, SpaceWire,...)
 - Discrete dedicated interfaces (Direct commands, sensor acquisition...)

DATA COMMUNICATIONS CONTEXT Typical data processing architecture

- Typical resulting on-board data processing architecture
 - Independent instruments data processing units
 - Direct interfaces to Mass Memory for high rate data storage
 - Instrument control through system bus and Remote Terminal Units (RTU)
 - Several types of data links adapted to communication needs

Compromise between system requirement, available technology and signals characteristics

Page 7 SpaceWire Data Links and Networks in Space Applications

DATA COMMUNICATIONS CONTEXT Alternate data processing architecture

Dedicated to improve the system budget issues:

- Lower number of nodes and links variants
- Share of common functions/resources
- Instrument connected to SpaceWire Network through Remote Terminal Interface (RTI)

SpaceWire Networks could be an element for improvement of future on-board data processing architecture and overall budgets

Page 8 SpaceWire Data Links and Networks in Space Applications

EADS

USAGE OF SPACEWIRE IN SPACE APPLICATIONS Current usage of high speed data links

- 1355 links used in several spacecrafts such as
 - Science data to Mass Memory (Cryosat, Rosetta, Mex/Vex)
 - For telecom signal dynamic switching (Inmarsat4)
- Other High data rate links used for Gbits performance requirements (Pleiades, TerraSAR-X)
- Also used as OBC ground test interface for software instrumentation (Pleiades, TerraSAR-X)
- SpaceWire used in most studies on future data processing architecture and Leon SoC prototypes
 - ESA studies (e.g SCoC and the A3M demonstrator, A3SysDef, Gamma, Disco...)
 - National agencies and EADS-Astrium internal projects (ALF3, Unionics, MAEVA,...)

DATA PROCESSING ARCHITECTURE STUDIES Avionics Advanced Architecture and Modules (A3M)

The A3M architecture includes fault tolerance mechanisms
Demonstrator includes three Spacecraft Controller on a Chip
Bi-directional SpaceWire links used for inter-node data synchronisation

20/07/2005

FA

DATA PROCESSING ARCHITECTURE STUDIES Avionics Advanced Architecture and Modules (A3M)

The A3M study conclusions on SpaceWire

- Very efficient for inter-processor communication :
 - With intelligent controllers, very high data rate can be achieved from memory to memory
 - Efficient implementation of protocols atop SpaceWire requires to limit the number of SW layers
 - The software must take into account the flow control mechanism in order to avoid overload propagation from one processor to the others
 - Communication time is generally small compared to the processing time required to manage a message.

DATA PROCESSING ARCHITECTURE STUDIES Aurora Avionics Architecture System Definition (A3SysDef)

- Definition of a generic functional architecture for planetary exploration missions
- High speed data-links between standard functional units
- Trade-off performed between:
 - PacketWire (10 Mbps, LVDS)
 - SpaceWire (200 Mbps, LVDS)
 - GIGABIT SpaceWire (1 Gbps, LVDS or optical)
 - Ethernet 100baseT (100 Mbps, 1,5 Vpp)
 - IEEE-1394 (400 Mbps, 265 mVpp)
 - USB 2.0 (480 Mbps, 3.3 Vpp)
 - PCI express (up to 2500 Mbps, 0,5 Vpp)
 - Conclusion : SpaceWire is selected for High Speed data network between on-board building blocks

DATA COMMUNICATIONS CONTEXT UNIONICS

- Advanced architecture dedicated for High-performance on-board distributed processing
- Modular and scalable architecture on SpaceWire network
- Specialized building blocks including:
 - Processor nodes
 - SpaceWire Routers
 - Mass Memory nodes
 - System Watchdog
- Demonstrator developed
- Further works planned
 - FDIR consolidation
 - Processing node on Leon2
 - Consolidation of SW modules
 - Case study implementation Letwork 'dumb' r and evaluation (ExoMars Rovera)s data storage

DATA PROCESSING ARCHITECTURE STUDIES Generic Architecture for Mass Memory Access (Gamma)

- Distributed architecture for data storage management.
 - Several memory users (Calculators, instruments, ...)
 - Several memory modules (and technologies)
 - Manage concurrent data accesses
 - Protect transactions
 - Ensure data consistency
- Demonstrator on a representative environment based on five identical commercial FPGA boards.
 - Use of SpaceWire network:
 - 40 Mbps at first,80 Mbps and more expected.
 - 2 SpaceWire interfaces per board to test concurrent accesses.

Page 14 SpaceWire Data Links and Networks in Space Applications

EADS

USAGE OF SPACEWIRE IN SPACE APPLICATIONS Issues for best usage of SpaceWire networks

- Availability of SpaceWire Network building blocks elements
 - Space qualified components and IP's for integration in SoC's
 - Ground support software/hardware
 - adapters to ground networks (usb, ethernet...), Traffic monitor/simulator, network administration SW, simulation...
- On-board Software issues
 - Communication services / SOIS HW/SW interface
 - Support of application distribution and resource sharing
- **FDIR** issues:
 - Failure modes of network building blocks (Routers, RTI's)
 - Support of Broadcast and Multicast modes
 - Support of time/memory data partitioning
- Detailed evaluation of properties for SpaceWire networks (latency, propagation time, data security...)

USAGE OF SPACEWIRE IN SPACE APPLICATIONS Conclusion

- SpaceWire/ECSS-E50-12 supports the need for high performance data processing on future spacecrafts
 - To be recommended for any point-to-point high speed links under 200 Mbps
 - A higher data rate implementation (for instance through other physical media) would increase the usability domain
 - Viewed as a future solution toward more generic payload data processing systems through on-board data networks
 - > Optimising on-board resources and performances
 - Some issues require consolidation (FDIR, communication services, development of SW and HW components, development tools)
 - Could also be extended to the whole data processing system (eg. for small vehicles, robotics...)