
 ECSS-E-50-12 Part 2 Draft C
29th March 2005

1

6
Remote memory access protocol

(normative)

6.1 General

6.1.1 Purpose
The remote memory access protocol (RMAP) has been designed to support a wide range
of SpaceWire applications. Its primary purpose however is to configure a SpaceWire
network, to control SpaceWire units and to gather data and status information from those
units. RMAP may operate alongside other communications protocols running over
SpaceWire.

RMAP may be used to configure SpaceWire routing switches, setting their operating
parameters and routing table information. It may also be used to monitor the status of
those routing switches. RMAP may also be used to configure and read the status of
nodes on the SpaceWire network. For example, the operating data rate of a node may be
set to 100 Mbits/s and the interface may be set to auto-start mode.

For simple SpaceWire units without an embedded processor, RMAP may be used to set
application configuration registers, to read status information and to read or write data
into memory in the unit.

For intelligent SpaceWire units RMAP can provide the basis for a wide range of
communications services. Configuration, status information, data transfer to and from
memory or mailboxes can be supported.

6.1.2 RMAP Operations
RMAP is used to write to and read from memory, registers, FIFO memory, mailboxes,
etc, in a destination node on a SpaceWire network. Input/output registers, control/status
registers and FIFOs are assumed to be memory mapped so are accessed as memory.
Mailboxes are indirect memory areas that are referenced using a memory address.

All read and write operations defined in the RMAP protocol are posted operations i.e.
the source does not wait for an acknowledgement or reply to be received. This means
that many reads and writes can be outstanding at any time. It also means that there is no
timeout mechanism implemented in RMAP for missing acknowledgements or replies. If
an acknowledgement or reply timeout mechanism is required it must be implemented in
the source user application.

6.1.2.1 Write commands
Writes commands can be acknowledged or not acknowledged by the destination node
when they have been received correctly. If the write is to be acknowledged and there is
an error with the write request, the destination will send an error code to the source that
sent the command. The error can only be sent to the source if the write command header

ECSS-E-50-12 Part 2 Draft C
29th March 2005

2

was received intact, so that the destination that detected the error knows where to send
the error message.

Write commands can perform the write operation after verifying that the data has been
transferred to the destination without error, or it can write the data without verification.
To perform verification on the data requires buffering in the destination node to store the
data while it is being verified, before it is written. The amount of buffering is likely to be
limited so verified writes ought only be performed for relatively short sets of data, that
will fit in the available buffer at the destination. Longer writes can be performed but
without verification prior to writing. Verification in this case is done after the data has
been written. Verified writes should always be used when writing to configuration or
control registers.

The acknowledged/non-acknowledged and verified/non-verified options to the write
command result in four different write operations:

• Write non-acknowledged, non-verified – writes zero or more bytes to memory in
a destination node. The command is checked using a CRC before the data is
written, but the data itself is not checked before it is written. No acknowledgement
to indicate that the command has been executed is sent to the source of the write
command. This command is typically used for writing large amounts of data to a
destination where it can be safely assumed that the write operation completed
successfully.

• Write non-acknowledged, verified – writes zero or more bytes to memory in a
destination node. Both the command and data are checked using CRCs before the
data is written. This limits the amount of data that can be transferred in a single
write operation, but erroneous data cannot be written to memory. No
acknowledgement to indicate that the command has been executed is sent to the
source of the write command. This command is typically used for writing
command registers and small amounts of data to a destination where it can be
safely assumed that the write operation completed successfully.

• Write acknowledged, non-verified – writes zero or more bytes to memory in a
destination node. The command is checked using a CRC before the data is written,
but the data itself is not checked before it is written. An acknowledgement to
indicate that the command has been executed is sent to the source of the write
command. This command is typically used for writing large amounts of data to a
destination where it can be safely assumed that the write operation completed
successfully, but an acknowledgement is required. For example writing sensor data
to memory.

• Write acknowledged, verified – writes zero or more bytes to memory in a
destination node. Both the command and data are checked using CRCs before the
data is written. This limits the amount of data that can be transferred in a single
write operation, but erroneous data cannot be written to memory. An
acknowledgement to indicate that the command has been executed is sent to the
source of the write command. This command is typically used for writing small
amounts of data to a destination where it is important to have confirmation that the
write operation was executed successfully. For example writing to command or
configuration registers.

6.1.2.2 Read commands
The read command reads one or more bytes of data from a specified area of memory in a
destination node. The data read is returned in a reply packet.

6.1.2.3 Read-modify-write
The read-modify-write command reads a register (or memory) returning its value and
then writes a new value, specified in the command, to the register. A mask can be
included, in the command, so that only certain bits of the register are written. This

 ECSS-E-50-12 Part 2 Draft C
29th March 2005

3

provides an atomic operation that can be used for semaphores and other handshaking
operations.

6.1.3 Guide to clause 6
A set of definitions is given in sub-clause 6.2. The various write commands are defined
in sub-clause 6.3. The read command is described in sub-clause 6.4, and the read-
modify-write command in sub-clause 6.5. The error codes that are used in RMAP replies
and acknowledgments are listed in sub-clause 6.6. The way in which partial
implementations of RMAP may be implemented is described in sub-clause 6.7. In sub-
clause 6.8, several use cases for RMAP are presented giving examples of how RMAP
can be used to support several different types of application. Finally, in sub-clause 6.9, a
summary of the RMAP command codes is given.

6.2 Definitions
Path Address is a SpaceWire path address which defines the route to a destination node
by specifying, for each router encountered on the way to the destination, the output port
that a packet is to be forwarded through. A path address comprises one byte for each
router on the path to the destination. Once a path address byte has been used to specify
an output port of a router it is deleted to expose the next path address byte for the next
router. All path address bytes will have all been deleted by the time the packet reaches
the destination

Logical Address byte is the logical address of the source or destination. This may be
used to route the packet to the destination or, if path addressing is being used, to simply
confirm that the final destination is the correct one i.e. that the logical address of the
destination matches the logical address in the packet. If the logical address of the
destination is unknown then the default logical address of 254 may be used (see sub-
clause 5.2.1). The destination may chose to accept or reject packets with a logical
address of 254.

Protocol Identifier byte identifies the particular protocol being used for communication.
For the Remote Memory Access protocol the protocol identifier has the value 1 (01h).

Packet Type, Command, Source Address Length byte determines the type of the
packet i.e. a command, a reply or an acknowledgement. This byte also includes two bits
that determine the number of extra 4-byte return addresses. For example, if these bits are
set to the value two then there will be eight extra source address bytes. If they are set to
zero then there are no extra address bytes.

Destination Key provides a one byte key which must be matched by the user destination
application in order for the RMAP command to be accepted.

Source Path Address bytes provide a source path address for the reply to a command.
The source path address is not needed if logical addressing is being used. The source
path address is used by the destination node to send acknowledgements or data back to
the source that requested a write or read operation using path addressing. The Source
Path Address byte allows path addressing and regional logical addressing to be used to
specify the source node. Leading zeros of the return address are ignored. If a packet is to
be sent to address zero then this is done by setting all the extra return address bytes to
zero. This will result in a single zero address byte being sent in front of the source
address.

Source Logical Address byte is the logical address to which the destination node for a
command is to reply. The Source Address is normally set to the logical address of the
source node that is sending the command. The Source Address byte may be set to 254
(0FEh) which is the default logical address, if the command source node does not have a
logical address.

Transaction Identifier bytes are used to identify command, response, and acknowledge
transactions that make up a particular read or write operation. The source of the

ECSS-E-50-12 Part 2 Draft C
29th March 2005

4

command gives the command a unique transaction identify. This transaction identifier is
returned in the reply to the command. This allows the command source to send many
commands without having to wait for a reply to each command before sending the next
command. When a reply or acknowledge comes in it can be quickly associate with the
command that caused it by the transaction identifier.

Extended Address byte is used to extend the 32-bit memory address to 40-bits allowing
a 1 Terabyte address space to be accessed directly in each node. For nodes that do not
support a 40-bit address space this byte should be set to zero. The Extended Address
may be used to differential between various address spaces in the destination. For
example when set to 00h it may reference a 4G location directly addressable memory
space and when set to 01h it may reference an array of mailboxes, which provide indirect
addressing.

Memory Address bytes form the bottom 32-bits of the memory address to which the
data in a write command is to be written or from where data is to be read for a read
command. Input/output registers and control/status registers are assumed to be memory
mapped.

Data Length bytes form the 24-bit length of the data that is to be written or read. The
length is the length in bytes with the most-significant byte of the length sent first.

Header CRC byte is an 8-bit Cyclic Redundancy Check (CRC) used to confirm that the
header is correct before executing the command. The header CRC is formed using the
CRC-8 code used in ATM (Asynchronous Transfer Mechanism). CRC-8 has the
following polynomial: X8 + X2 + X1 + 1, with a starting value of 00h. Each byte in the
header starting with the destination logical address and ending with the byte before the
header CRC itself is used in the CRC

Data bytes are the data that is to be written in a write command or the data that is read in
a read response.

Data CRC is an 8-bit Cyclic Redundancy Check (CRC) used to confirm that the data is
correct before being written in a verified write command or was correctly transferred in a
non-verified write command or read reply. The data CRC starts with the byte after the
header CRC and covers all the data bytes. The CRC-* code is used which is the same as
for the header CRC. CRC-8 has the following polynomial: X8 + X2 + X1 + 1, with a
starting value of 00h.

EOP character is the End Of Packet market of the SpaceWire packet.

6.3 Write Command
The various types of write command are describe here.

6.3.1 Write command format
The write command provides a means for one node, the source node, to write one or
more bytes of data into memory of another node, the destination node on a SpaceWire
network. The format of the command is shown in Figure 6-1.

 ECSS-E-50-12 Part 2 Draft C
29th March 2005

5

Destination Path Address

Destination Logical Address Protocol Identifier Packet Type, Command,
Source Path Addr Len Destination Key

Source Path Address Source Path Address Source Path Address Source Path Address

Source Logical Address Transaction Identifier Transaction Identifier Extended Write Address

Write Address (MS) Write Address Write Address Write Address (LS)

Data Length (MS) Data Length Data Length (LS) Header CRC

Data Data Data Data

Destination Path Address Destination Path Address

Data Data Data Data

Data Data CRC EOP

First byte transmitted

Last byte transmitted

Write = 1 Verify data(1)
Don’t Verify (0)Command = 1 Increment/

No inc. address
Ack (1)/

No ack (0)Reserved = 0 Source Path
Address Length

Source Path
Address Length

Bits in Packet Type / Command / Source Path Address Length Byte

MSB LSB

Packet Type Command Source Path Address Length

Figure 6-1 Write Command Format

The Destination Path Address is the address on the SpaceWire network of the node that
is to have data written into its memory. The destination address is made up of two parts:
the Destination Path Address bytes which are optional (shaded in Figure 6-1) and the
Logical Address. If path addressing is being used then the Destination Path Address
bytes contain the path to the destination node. The Destination Logical Address byte is
then set to the logical address of the destination node or to the default value 254 (0FEh).
If logical addressing is being used there are no Destination Path Address bytes and the
Destination Logical Address is set to the logical address of the destination node.
Normally logical addressing would be used and there would be no Destination Path
Address bytes.

The Protocol Identifier byte is set to the value 1 (01h) which is the Protocol Identifier for
the Remote Memory Access protocol.

The Packet Type field comprises a reserved bit and a command/reply bit which is set (1)
for a command and clear (0) for a response. The packet type field for the write command
is 01b, i.e. the command/reply bit is set, to indicate that the packet is a command packet,
rather than a reply packet. The reserved bit is clear (0).

The Command field holds the direct write command.

The Write/Read bit is set (1) for a write command.

The Verify Data Before Write bit is set (1) if the data is to be verified before it is written
to memory. The command header is always checked using a CRC (Header CRC see
below) before the command is executed. If the Verify Data Before Write bit is set then
the entire command must be buffered and verified using the Header CRC and the Data
CRC before the command is executed. Since the entire command and data has to be
buffered this places a limit on the amount of data that can be included in the write
command. All RMAP compliant interfaces have to support the buffering and validation
of write commands with at least four bytes of data. The buffering and validation of write
commands with more than four bytes of data is dependent on the particular interface. If
there is more data than will fit in the available buffer space then the command will not be
executed and a reply with the “Verify Buffer Overrun” error code shall be sent back to
the source, assuming that an acknowledgement has been requested in the command. If
the Verify Data Before Write bit is not set (0) then the data is not verified before it is

ECSS-E-50-12 Part 2 Draft C
29th March 2005

6

written. This enables much larger amounts of data than can be buffered to be written in a
single command. The command header is verified with the Header CRC so that it is
confirmed that the correct memory address and data length is being used. The data is
then streamed into the memory space as it arrives without first being checked. Once all
the data has been written to the specified memory area the data is verified using the Data
CRC. This is acceptable because even if the wrong data has been written to memory, at
least it has not been written in the wrong place. The error will be reported to the source
node if the Ack/No_Ack bit has been set (1) to request an acknowledgement to the write
command. If the source is able to resend the data then this can be done. When writing to
control and configuration registers it is essential that the Verify Data Before Write bit is
set (1).

The Ack/No_Ack bit is set (1) if an acknowledgement to the write command is required
and cleared (0) if no acknowledgement is to be sent. If no acknowledgement is requested
then the source will not be informed when an error occurs in the write command.

The command option “Increment / No Increment Address” is used for multiple data byte
transfers. If set (1) it causes the write memory address in the destination to increment on
every byte (or word as determined by the destination unit) written so that data bytes are
written to consecutive memory locations. If not set (0) the write memory address is not
incremented so successive data bytes (or words as determined by the destination unit) are
written to the same memory location. Note that the width of the memory word is
determined by the destination unit and can be any multiple of 8-bits. For example, if the
width of the destination unit memory word is 32-bits then four data bytes from the data
field of the command are written into one memory location in the destination unit.
Normally the memory address would be aligned on a 32-bit boundary when doing 32-bit
writes.

The Source Path Address Length field is set to zero if logical addressing is being used. If
path addressing (or regional logical addressing) is being used then the Source Path
Address Length field has to be set to the smallest number of 32-bit words that can be
used to contain the path address from the destination node that is being written to back to
the source of the command packet. For example, if three path address bytes are required
then the Source Address Path Length field is set to one.

The Destination Key byte contains an eight-bit code holding the user destination key.
This value is passed to the destination user application for authorisation. If it is not the
value expected by the destination user application then the command will be rejected and
not executed. An invalid destination key error will be returned to the source of the write
command if an acknowledgement has been requested.

The Source Path Address bytes contain any required path address (or regional logical
address) bytes needed to route the reply packet from the destination node back to the
source node. If logical addressing is being used then the Source Path Address bytes are
not present.

The Source Logical Address byte contains the logical address of the source of the write
command packet. If the source node does not have a logical address because only path
addressing is being used then the Source Logical Address byte must be set to 254 (0FEh)
(see sub-clause 5.2.1) which is the default logical address.

The Transaction Identifier bytes are set to the value provided by the user application in
the source node. Typically transaction identifiers are an incrementing integer sequence,
with each successive RMAP transaction being given the next number in the sequence.
The intention of the transaction identifier is to uniquely identify a transaction. The reply
to a write command contains the same transaction identifier as in the write command.
Thus it can be readily matched, by the user application in the source node, to the specific
command that caused the reply.

The Extended Write Address byte holds the most-significant 8-bits of the memory
address to be written to. This extends the 32-bit memory address to 40-bits allowing
access to 1 Terabyte of memory space in each node.

 ECSS-E-50-12 Part 2 Draft C
29th March 2005

7

The four Write Address bytes hold the bottom 32-bits of the memory address to which
the data in a write command is to be written. The first byte sent in the command is the
most significant byte of the address. When combined with the Extended Write Address
byte a 40-bit memory address is provided.

The three Data Length bytes contain the length of the data that is to be written. This
gives a maximum data length of 16 Mbytes -1 in a single write command. If a single byte
is being written this field is set to one. If set to zero then no bytes will be written to
memory which may be used as a test transaction. The first byte sent is the most
significant byte of the data length.

The Header CRC byte is an 8-bit CRC used to confirm that the header is correct before
executing the command.

The Data bytes contain the data that is to be written into the memory of the destination
node. When writing to memory organised in words (e.g. 32-bit words) then the first byte
sent is the most-significant byte of the word.

The Data CRC contains an 8-bit CRC error check code used to confirm that the data was
correctly transferred. In a write command data is written to destination memory provided
that the header CRC shows no error in the header. This helps to prevent inadvertent
writing to incorrect areas of memory when there is an error in the header. If there is an
error indicated by the data CRC then the wrong data might have been written to memory,
but it will not have been written to the wrong place. The user application at both source
and destination will be informed that there was an error in the data transferred so that
corrective action can be taken.

EOP character is the End Of Packet marker of the SpaceWire packet.

6.3.2 Write reply format
The reply to a write command is sent by the destination back to source of the write
command. The reply is used to indicate the success or failure of the write command. The
format of the write reply is shown in Figure 6-2.

Source Path Address

Source Logical Address Protocol Identifier Packet Type, Command,
Source Path Addr Len Status

Destination Logical Address Transaction Identifier Transaction Identifier Reply CRC

Source Path Address Source Path Address

EOP

First byte transmitted

Last byte transmitted

Write = 1 Verify data (1)
Don’t Verify (0)Response = 0 Increment/

No inc. addressAck = 1Reserved = 0

Bits in Packet Type / Command / Source Path Address Length Byte

MSB

Packet Type Command

Source Path
Address Length

Source Path
Address Length

LSB

Source Path Address Length

Figure 6-2 Write Reply Format

The Source Path Address bytes contain any required path address bytes needed to route
the reply packet from the destination node back to the source node. The value of the
Source Path Address bytes are as specified in the Source Path Address field of the write
command. If logical addressing is being used then the Source Path Address bytes are not
present in the reply to the write command. Any Source Path Address bytes are stripped
off by the time the reply reaches the source of the write command.

ECSS-E-50-12 Part 2 Draft C
29th March 2005

8

The Source Logical Return Address byte contains the logical address of the source of the
write command packet, as specified in the write command Source Address field.

The Protocol Identifier byte is set to the value 1 (01h) which is the Protocol Identifier for
the Remote Memory Access protocol.

The Packet Type field is 00b to indicate that this is a reply packet.

The Command and Source Path Address Length field are set to the same values as in the
command byte of the write command. In the reply the Source Path Address Length bits
do not indicate extra words in the reply packet. They are just a copy of the values in the
original command.

The Status byte provides the status of the write command. This is set to zero if the
command executed successfully and to a non zero error code if there was an error. See
error codes sub-clause 6.6.

Destination Logical Address the logical address of the unit sending the reply.

The Transaction Identifier bytes are set to the same value as provided in the write
command. This is so that the source of the write command can associate the reply with
the original write command.

The Reply CRC byte is an 8-bit CRC used to confirm that the reply packet has been
received without error. This is calculated in the same way as a header CRC.

EOP character is the End Of Packet marker of the SpaceWire packet.

6.3.3 Write action
The operation of the write command is illustrated in the sequence diagram of Figure 6-3.

Write Request

Write Data
Request

Write
Command

Write
Reply

Write Complete
Confirmation

Source Destination

Write Data
Authorisation

Write Data

Write Data
Indication

Figure 6-3 Write Command/Acknowledge Sequence

The write command sequence begins when an application requests to perform a write
operation (Write Request). In reply to this the source node builds the write command and
sends it across the SpaceWire network to the destination node (Write Command). When
the Write Command arrives at the destination, the header is first checked for errors and if
there are no errors the user application at the destination node is asked if it will accept
the write operation (Write Data Request). Assuming that authorisation is given by the
destination user application (Write Data Authorisation) the data contained in the write
command is written into the specified memory location of the destination node (Write
Data). If the Verify Data Before Write bit is set in the command field of the header then
the data is buffered and checked using the data CRC before it is written to memory.

 ECSS-E-50-12 Part 2 Draft C
29th March 2005

9

Once data has been written to memory the user application running on the destination
node is informed that a write operation has taken place (Write Data Indication). If an
acknowledgement has been requested by setting the Ack/No_Ack bit in the command
field then the destination node will wait until the data has been written to memory in the
destination node. It will then send a write reply packet back to the source of the write
command (Write Reply). When the write reply is received, the source node indicates
successful completion of the write request (Write Complete Confirmation).

If no acknowledgement is requested then the destination node waits for the data to be
written into destination memory, but does not send an acknowledgement write reply to
the source.

Note that the speed with which the destination user application responds to the Write
Data Request with a Write Data Authorisation will limit the rate at which RMAP
commands can be processed by the destination node. The SpaceWire interface will block
during this period, since it can only process one command at a time. In some cases, for
example writing to control or configuration registers, the Write Data Request and Write
Data Indication are implicit in the actual write operation so there is no appreciable delay
and one command can immediately follow the previous one.

The destination user application may reject the command for any reason it likes. For
example the write address might not be 32-bit aligned, the length might not be a multiple
of 4-bytes when the user application would like it to be, or the address range may fall
partially or completely outside an acceptable memory address region.

6.3.4 Write errors
There are four principal types of error that can arise during a write operation: Write
Command Header Error, Write Authorisation Rejection, Write Command Data Error and
Write Reply Error.

The sequence of events that occurs when there is an error in the header of the write
command is illustrated in Figure 6-4.

Write Request
Write
Command

Source Destination

Record
Packet
Error

Figure 6-4 Write Command Header Error

The Write Command packet arrives at the destination and its header is found to be in
error. This fact is added to the error statistics in the destination node. The remainder of
the packet is discarded. No other action is taken at the destination node, specifically no
data is written into the memory of the destination node and no write reply packet is sent
back to the source node. The source node does not receive a write reply packet so no
action is taken by the RMAP protocol in the source node. The user application on the
source node may set a timeout time when it requests RMAP to send the write command.
When no reply is received this timer will time out and detect the fact that no write reply
has been received in the time expected. It is up to the user application in the source node
to provide any command reply timeout timers. This is not part of RMAP’s
responsibilities. The reason for this is that if RMAP is made responsible for the timeout

ECSS-E-50-12 Part 2 Draft C
29th March 2005

10

timers and if posted commands are to be implemented (i.e. many outstanding write
commands) then separate timeout timer and reply-received flags will be required for
each outstanding write request. This could be a large number and is very much
application dependent. Hence the decision to put this responsibility in the user
application at the source node. The user application knows how many outstanding
requests it will need and can provide both posted and non-posted write operations.

If the write command header is valid, the user application at the destination node is asked
if it will accept the write operation. If it rejects the write operation then a write error
reply is returned to the source node (assuming that the Ack/No_Ack bit is set in the write
command, requesting an acknowledgement or error code to be sent). This situation is
illustrated in Figure 6-5. When the Write Reply containing the error code is received
back at the source node, a write error indication (Authorisation Failure) is signalled to
the user application in the source node.

Write Request

Write Data
Request

Write
Command

Write Reply
Error

Authorisation
Failure

Source Destination

Write Data
Authorisation
Rejection

Figure 6-5 Write Data Authorisation Rejection

The situation that arises when there is an error in the data field of the write command is
shown in Figure 6-6.

Write Request

Write Data
Error Indication

Write
Command
Header

Write Data
Error Reply

Write Data
Failure

Source Destination

Record
Data Error

Write Data
Request
Write Data
Authorisation

Write
Command
Data

Figure 6-6 Write Command Data Error

 ECSS-E-50-12 Part 2 Draft C
29th March 2005

11

Since the header of the write command has been received without error, a request is
made to write data to destination node memory (Write Data Request). This request is
granted (Write Data Authorisation) and RMAP starts to transfer data from the data field
of the received packet into destination node memory. If there is insufficient data in the
data field (i.e. the data field is shorter than the data length provided in the write
command header) then when the EOP is reached data will stop being transferred into
destination memory and an error flag will be raised. Note that in this case the data CRC
will also be transferred to memory. If there is too much data in the data field then the
specified amount of data, defined by the data length field of the write command header,
will be transferred to memory, the rest of the packet will be discarded and an error flag
will be raised. If there is a data CRC error then an error flag will be raised after the data
has been transferred to destination memory. These various errors will be reported to the
user application running on the destination node (Write Error Indication). Since the
header of the write command was intact it is possible to report the error back to the
source. A write reply packet is sent back to the source node indicating the type of error
that has occurred (Write Data Error Reply see Table 6-1 for a full list of error codes).
When this is received at the source node the error is reported to the application that
requested the write command (Write Data Failure).

It is possible that the write reply is corrupted or for some other reason does not reach the
source node intact. This situation is illustrated in Figure 6-7.

Write Request
Write
Command

Write
Reply

Source Destination

Record
Packet
Error

Write Data
Request
Write Data
Authorisation

Write Data

Write Data
Indication

Figure 6-7 Write Reply Error

The data has been correctly written into destination memory and the destination
application has been informed. The write reply that is sent back to the source node is
corrupted. If the corrupted packet arrives at the source node (or indeed any other node) it
is recorded as a packet receive error.

There are no timeout timers for the write requests within the RMAP protocol. Any
timing of the write reply must be done by the user application. This is because if timeout
timers are contained within RMAP there would have to be one timer per outstanding
write operation, which could be a large number of timers in some cases. Just one timer
would be possible but the write operation would then be “non-posted” so that there could
only be one outstanding write request at any one time. The need to support many
outstanding write requests is important as is the need to minimise the hardware needed to
implement RMAP, hence the decision to make any write reply timeout the responsibility
of the application in the source node.

RMAP informs the application when a write acknowledge is received. It is not
responsible for informing the user application if no acknowledge is received.

ECSS-E-50-12 Part 2 Draft C
29th March 2005

12

6.3.5 Write command parameters
The Write Request has to provide the following parameters:

• Destination address
• Source address
• Transaction identifier
• Destination key
• Write command options
• Write address
• Data length
• Data

6.4 Read Command

6.4.1 Read command format
The read command provides a means for one node, the source node, to read one or more
bytes of data from the memory of a destination node. The format of the command is
shown in Figure 6-8.

Destination Path Address

Read Address (MS) Read Address Read Address Read Address (LS)

Data Length (MS) Data Length Data Length (LS) Header CRC

Destination Path Address Destination Path Address

EOP

First byte transmitted

Last byte transmitted

Destination Logical Address Protocol Identifier Packet Type, Command
Source Path Addr Len Destination Key

Source Path Address Source Path Address Source Path Address Source Path Address

Source Logical Address Transaction Identifier (MS) Transaction Identifier (LS) Extended Read Address

Read = 0 Read = 0Command = 1 Increment/
No inc. address

Read = 1
(Ack/No_Ack)Reserved = 0

Bits in Packet Type / Command / Source Path Address Length Byte

MSB

Packet Type Command

Source Path
Address Length

Source Path
Address Length

LSB

Source Path Address Length

Figure 6-8 Read Command Format

The Destination Address is the address on the SpaceWire network of the node from
which data is to be read. The destination address is made up of two parts: the Destination
Path Address bytes which are optional (shaded in Figure 6-1) and the Destination
Logical Address. If path addressing is being used then the Destination Path Address
bytes contain the path to the destination node. The Destination Logical Address is byte is
then set to the logical address of the destination node or to the default value 254 (0FEh).
If logical addressing is being used there are no Destination Address bytes and the logical
address is set to the logical address of the destination node. Normally logical addressing
would be used and there would be no Destination Path Address bytes.

The Protocol Identifier byte is set to the value 1 (01h) which is the Protocol Identifier for
the Remote Memory Access protocol.

 ECSS-E-50-12 Part 2 Draft C
29th March 2005

13

The Packet Type field is set to 01b indicate that the packet is a command packet, rather
than a reply packet.

The Command field holds the read command.

Write/Read bit is clear (0) to indicate that it is a read command.

Verify before write is clear (0) as there is no writing of data.

Ack/No_Ack is set (1) to indicate that a reply will be generated which will contain the
data read.

The command option “Increment / No Increment Address” is used for multiple data byte
transfers. If set (1) it causes the read address in the destination to be incremented after
every byte (or word as determined by the destination unit) has been read so that data
bytes are read from consecutive memory locations. If not set (0) the read address is not
incremented so successive data bytes (or words as determined by the destination unit) are
read from the same memory location. Note that the width of the memory word is
determined by the destination unit and can be any multiple of 8-bits. For example, if the
width of the destination unit memory word is 32-bits then four data bytes from the data
field of the command are read from one memory location in the destination unit.
Normally the memory address would be aligned on a 32-bit boundary when doing 32-bit
reads.

The Source Path Address Length field is set to zero if logical addressing is being used. If
path addressing is being used then the Source Path Address Length field has to be set to
the smallest number of 32-bit words that can be used to contain the path address from the
destination node that is being written to back to the source of the command packet. For
example, if three path address bytes are required then the Source Path Address Length
field is set to one.

The Destination Key byte contains an eight-bit code holding the user destination key.
This value is passed to the destination user application for authorisation. If it is not the
value expected by the destination user application then the command will be rejected and
not executed. An invalid destination key error will be returned to the source of the read
command.

The Source Path Address bytes contain any required path address bytes needed to route
the reply packet from the destination node back to the source node. If logical addressing
is being used then the Source Address bytes are not present.

The Source Logical Address byte contains the logical address of the source of the read
command packet. If the source node does not have a logical address because only path
addressing is being used then the Source Logical Address byte must be set to 254 (0FEh)
which is the default logical address.

The Transaction Identifier bytes are set to the next transaction identifier in the sequence
held by the source node. This uniquely identifies the transaction being started by the read
command. The reply to the read command will contain the same transaction identifier
and can thus be readily matched to the specific command that caused the reply.

The Extended Read Address byte holds the most-significant 8-bits of the memory
address to be read. This extends the 32-bit memory address to 40-bits allowing access to
1 Terabyte of memory space in each node.

The four Read Address bytes hold the bottom 32-bits of the memory address from which
data is to be read. The first byte sent in the command is the most significant byte of the
address.

The three Data Length bytes contain the length, in bytes, of the data that is to be read. If
a single byte is to be read this field is set to one. If set to zero then no bytes will be read
from memory which may be used as a test transaction. The first byte sent is the most
significant byte of the data length.

ECSS-E-50-12 Part 2 Draft C
29th March 2005

14

The Header CRC byte is an 8-bit CRC used to confirm that the header is correct before
executing the command.

EOP character is the End Of Packet marker of the SpaceWire packet.

6.4.2 Read reply format
The read reply contains either the data that was read from the destination node, or an
error code indicating why data could not be read. The reply to a read command is sent by
the destination node back to the source of the read command. The format of the read
reply is illustrated in Figure 6-9.

Source Path Address

Source Logical Address Protocol Identifier Packet Type, Command,
Source Path Addr Len Status

Destination Logical Address Transaction Identifier (MS) Transaction Identifier (LS) Reserved = 0

Data Length (MS) Data Length Data Length (LS) Header CRC

Data Data Data Data

Source Path Address Source Path Address

Data Data Data Data

Data Data CRC EOP

First byte transmitted

Last byte transmitted

Read = 0 Read = 0Response = 0 Increment/
No inc. addressRead = 1Reserved = 0

Bits in Packet Type / Command / Source Address Path Length Byte

MSB

Packet Type Command

Source Path
Address Length

Source Path
Address Length

LSB

Source Path Address Length

Figure 6-9 Read Reply Format

The Source Path Address bytes contain any required path address bytes needed to route
the reply packet from the destination node back to the source node. The value of the
Source Path Address bytes are as specified in the Source Address field of the read
command. If logical addressing is being used then the Source Path Address bytes are not
present in the reply to the write command. Any Source Path Address bytes are stripped
off by the time the reply reaches the source of the write command.

The Source Logical Address byte contains the logical address of the source of the read
command packet, as specified in the read command Source Logical Address field.

The Protocol Identifier byte is set to the value 1 (01h) which is the Protocol Identifier for
the Remote Memory Access protocol.

The Packet Type field is 00b to indicate that this is a reply packet.

The Command and Source Path Address Length field are set to the same values as in the
command byte of the read command. In the reply the Source Path Address Length bits
do not indicate extra words in the reply packet. They are just a copy of the values in the
original command.

The Status byte provides the status of the read command. This is set to zero if the
command executed successfully and to a non zero error code if there was an error. See
sub-clause 6.6 for a description of the possible error codes.

Destination Logical Address the logical address of the unit sending the reply.

 ECSS-E-50-12 Part 2 Draft C
29th March 2005

15

The Transaction Identifier bytes are set to the same value as provided in the read
command. This is so that the source of the read command can associate the reply and
data in the reply with the original read command.

The three Data Length bytes contain the length, in bytes, of the data that is to be read and
returned in the reply packet. The first byte sent is the most significant byte of the data
length. If the read reply packet is indicating an error, i.e. the status byte is non-zero, then
the Data Length will normally be zero and there will be no data.

The Header CRC byte is an 8-bit CRC used to confirm that the header of the reply
packet has been received without error.

The Data bytes contain the data that has been read from the memory of the destination
node. When reading from memory organised in words (e.g. 32-bit words) then the first
byte sent is the most-significant byte of the word.

The Data CRC is an 8-bit CRC error check code used to confirm that the data was
correctly transferred.

EOP character is the End Of Packet marker of the SpaceWire packet.

6.4.3 Read action
The operation of the read command is illustrated in the sequence diagram of Figure 6-10.

Read Request

Read Data
Request

Read
Command

Read
Reply

Read Data
Confirmation

Source Destination

Read Data
Response

Figure 6-10 Read Command/Reply Sequence

The read command sequence starts when an application requests to perform a read
operation (Read Request). The read command is constructed and sent to the destination
node (Read Command). When the read command arrives at the destination it is flagged
to the user application on the destination node (Read Data Request). The header of the
read reply packet is formed and the requested data appended to it. The read reply
containing the data is then sent back to the source of the read command. When it arrives
there the user application that requested the data is informed (Read Data Confirmation).

6.4.4 Read errors
There are three principal types of error that can occur when executing a read command:
read command error, read authorisation rejection, read reply header error and read reply
data error. These errors will now be considered.

The sequence of events following a read command error are illustrated in Figure 6-11.

ECSS-E-50-12 Part 2 Draft C
29th March 2005

16

Read Request
Read
Command

Source Destination

Record
Packet Error

Figure 6-11 Read Command Error

If the read command is corrupted but arrives at the destination node then a packet error
will be recorded at the destination, but no other action will be taken by the destination
node. It will not read any data and will not return a read reply packet. If the read
command is lost altogether then the destination node would know nothing about the read
command at all and would not be able to record a packet error.

If indication of this type of error is required at the source node then it is up to the user
application at the source to set a timeout timer for the reply to the read command.

A read command may be received correctly (no header CRC error) but may still be
rejected by the destination node. For example the read command may be for a different
device type than that of the destination node, or the read command may be requesting
data from an invalid memory address within the destination node. This situation is
illustrated in Figure 6-12.

Read Request

Read Data
Request

Read
Command

Read
Reply
Authorisation
Error

Authorisation
Failure

Source Destination

Read
Authorisation
Rejection

Figure 6-12 Read Authorisation Rejection

When the read command arrives without error at the destination node its parameters are
passed to the user application in the destination for authorisation. The read request, in
this case, is rejected (Read Authorisation Rejection) and an error message is sent back to
the source node (Read Reply Authorisation Error). When this error message arrives at
the source node it causes an Authorisation Failure to be flagged to the user application in
the source node.

The situation that arises following a read reply header error is shown in Figure 6-13.

 ECSS-E-50-12 Part 2 Draft C
29th March 2005

17

Read Request

Read Data
Indication

Read
Command

Read
Reply

Source Destination

Read Data
Response

Record
Packet
Error

Figure 6-13 Read Reply Header Error

The read command is received by the destination node and a reply returned to the source
node containing the requested data. Either the reply packet gets lost altogether or the
header of the read reply is received corrupted and a packet error is recorded at the
source. Because there is an error in the header it is not known for certain what
transaction identifier the reply packet is for, so nothing else can be done by RMAP.

If the user application at source has set a timeout timer for the read reply, then it will be
able to detect the missing response, but this is outside the scope of the RMAP.

The result of an error in the data field of a read reply is illustrated in Figure 6-14.

Read Request

Read Data
Indication

Read
Command

Read
Reply

Read Data
Failure

Source Destination

Read Data
Response

Figure 6-14 Read Reply Data Error

If the header of the read reply packet is received intact but the data field is corrupted as
indicated by an incorrect data field length (too long or too short) or by a CRC error, then
an error can be flagged to the application immediately (Read Data Failure) without
having to wait for a timeout.

6.4.5 Read command parameters
The Read Request has to provide the following parameters:

ECSS-E-50-12 Part 2 Draft C
29th March 2005

18

• Destination address
• Source address
• Transaction identifier
• Destination key
• Read command options
• Read address
• Data length

Note that RMAP does not handle the user application receive buffers, otherwise it would
have to maintain at least a pointer for every outstanding read request. It is up to the user
application to handle any receive buffers. The appropriate receive buffer for a read reply
may be identified in the user application by the transaction identifier in the read reply.

6.5 Read-Modify-Write Command

6.5.1 Read-modify-write command format
The read-modify-write command provides a means for a source node, to read a memory
location in a destination node, modify some of the bits read and then write the new value
back to the same memory location. The original value read from memory is returned to
the source node. The format of the command is shown in Figure 6-15.

Destination Path Address

Destination Logical Address Protocol Identifier Packet Type, Command
Source Path Addr Len Destination Key

Source Path Address Source Path Address Source Path Address Source Path Address

Source Logical Address Transaction Identifier Transaction Identifier Extended RMW Address

RMW Address (MS) RMW Address RMW Address RMW Address (LS)

Data +Mask Length (MS)
= 00h

Data + Mask Length
= 00h

Data + Mask Length (LS)
= 00h, 02h, 04h, 06h or 08h Header CRC

Data (MS) Data Data Data (LS)

Destination Path Address Destination Path Address

Data/Mask CRC EOP

First byte transmitted

Last byte transmitted

Read = 0 Verify Data
Before WR = 1Command = 1 Incr. address

= 1
Ack/No_Ack

= 1Reserved = 0

Bits in Packet Type / Command / Source Address Path Length Byte

MSB

Packet Type Command

Mask (MS) Mask Mask Mask (LS)

Source Path
Address Length

Source Path
Address Length

LSB

Source Path Address Length

Figure 6-15 Read-Modify-Write Command Format

The Destination Path Address and Destination Logical Address are the same as for a read
or write command.

The Protocol Identifier byte is set to the value 1 (01h) which is the Protocol Identifier for
the Remote Memory Access protocol.

The Packet Type field is 01b, i.e. the command/reply bit is set, to indicate that the packet
is a command packet, rather than a reply packet.

The Command field holds the read-modify-write command.

 ECSS-E-50-12 Part 2 Draft C
29th March 2005

19

The Write/Read bit is clear (0) for a read-modify-write command.

The Verify Data Before Write bit is set (1) so that the data is always verified before it is
used to update the memory location. This also distinguishes a read-modify-write from a
read command.

The Ack/No_Ack bit is set (1) so that a reply to the read-modify-write command is
always produced. This reply will contain the data initially read from the register in the
destination node.

The “Increment / No Increment Address” bit is set (1) so that the destination memory
address is incremented if the width of the memory is less than four bytes (32-bits). This
means that when more than one byte is to be read-modified-written the address will be
incremented if byte wide memory is being used. Note that the width of the memory word
is determined by the destination unit and can be any multiple of 8-bits. For example, if
the width of the destination unit memory word is 32-bits then four data bytes from the
data field of the command are read and written into one memory location in the
destination unit. Normally the memory address would be aligned on a 32-bit boundary
when doing 32-bit read-modify-writes.

The Source Path Address Length field has the same function as for the read and write
commands. If specifies the number of extra 32-bit words needed to hold any source path
address.

The Destination Key byte contains an eight-bit code holding the user destination key.
This value is passed to the destination user application for authorisation. If it is not the
value expected by the destination user application then the command will be rejected and
not executed. An invalid destination key error will be returned to the source of the read-
modify-write command.

The Source Path Address bytes contain any required path address bytes needed to route
the reply packet from the destination node back to the source node. If logical addressing
is being used then the Source Address bytes are not present.

The Source Logical Address byte contains the logical address of the source of the RMW
command packet. If the source node does not have a logical address because only path
addressing is being used then the Source Logical Address byte must be set to 254 (0FEh)
which is the default logical address.

The Transaction Identifier bytes are set to the next transaction identifier in the sequence
held by the source node. This uniquely identifies the transaction being started by the
RMW command. The reply to the RMW command will contain the same transaction
identifier and can thus be readily matched to the specific command that caused the reply.

The Extended RMW Address byte holds the most-significant 8-bits of the memory
address to be read-modified-written. This effectively extends the 32-bit memory address
to 40-bits allowing access to 1 Terabyte of memory space in each node.

The four RMW Address bytes hold the bottom 32-bits of the memory address which is
to be read-modified-written. The first byte sent in the command is the most significant
byte of the address. When combined with the Extended RMW Address byte a 40-bit
memory address is provided.

The three Data Length bytes contain the length of the data that is to be written. In a read-
modify write command this gives the total length of data (data and mask) sent in the
command, which is twice the amount of data to be read and written. For example if a 2-
byte word is to be written, then the data length will be 04h. There will be two data bytes
and two mask bytes in the command. Two bytes will be read from memory and returned
to the source node. Two bytes will be written combining the read data, the data from the
command and the mask. The maximum amount of data that can be read-modified-written
with a read-modify-write command is 4 bytes. Hence the data length can only take on
values of 00h, 02h, 04h, 06h or 08h. The first byte sent is the most significant byte of the
data length. If an invalid data length (01h, 03h, 05h, 07h or >08h) is specified then an

ECSS-E-50-12 Part 2 Draft C
29th March 2005

20

error will be returned to the source. If the data length is zero no data will be read or
written.

The Header CRC byte is an 8-bit CRC used to confirm that the header is correct before
executing the command.

The Data bytes contain the data that is to be combined with the data read from memory
and the mask, and then written into the memory of the destination node. When writing to
memory organised in words (e.g. 32-bit words) then the first byte sent is the most-
significant byte of the word. The set of 0, 1, 2, 3 or 4 data bytes precede the
corresponding set of 0, 1, 2, 3, or 4 mask bytes.

The Mask bytes are used by the destination application to define how the data to be
written to memory is formed. For example, data to be written could be selected on a bit
by bit basis from the data send in the command when the corresponding mask bit is set
(1) or from the data read in the reply when the mask bit is clear (0).

Written Data = (Mask AND Command_Data) OR (/Mask AND Read_Data).

This example is shown in Figure 6-16. The destination user application may implement
different schemes for example test and set.

1 0 0 0 1 0 0 0

1 0 0 0 1 1 1 0

1 1 1 0 0 0 1 1

Data in command (Data)

Mask in command (Mask)

Data read from destination memory and returned to source (Read)

1 1 1 0 1 0 0 1 Data written to destination memory
= (Mask AND Data) OR (/Mask.Read)

Figure 6-16 Example Operation of Read-Modify-Write Command

The Data/Mask CRC contains an 8-bit CRC error check code used to confirm that the
data and mask information was correctly transferred. The read-modify-write command
will only be executed if there is no error in the data/mask.

EOP character is the End Of Packet marker of the SpaceWire packet.

6.5.2 Read-modify-write reply format
The reply to a read-modify-write command is sent by the destination back to source of
the command. The reply is used to indicate the success or failure of the read-modify-
write command and to return the data originally read from the destination memory. The
format of the write reply is shown in Figure 6-17.

 ECSS-E-50-12 Part 2 Draft C
29th March 2005

21

Source Path Address

Source Logical Address Protocol Identifier Packet Type, Command,
Source Path Addr Len Status

Destination Logical Address Transaction Identifier (MS) Transaction Identifier (LS) Reserved = 0

Data Length (MS) = 0 Data Length = 0 Data Length (LS)
= 01h, 02h, 03h or 04h Header CRC

Data Data Data Data

Source Path Address Source Path Address

Data CRC EOP

First byte transmitted

Last byte transmitted

Read = 0 Verify Data
Before WR = 1Response = 0 Inc. address

= 1
Ack/No_Ack

= 1Reserved = 0

Bits in Packet Type / Command / Source Path Address Length Byte

MSB

Packet Type Command

Source Path
Address Length

Source Path
Address Length

LSB

Source Path Address Length

Figure 6-17 Read-Modify-Write Reply Format

The Source Path Address bytes contain any required path address bytes needed to route
the reply packet from the destination node back to the source node. These bytes are
optional and are only present if path (or regional logical) addressing is being used.

The Source Logical Address byte contains the logical address of the source of the read-
modify-write command packet, as specified in the command Source Address field.

The Protocol Identifier byte is set to the value 1 (01h) which is the Protocol Identifier for
the Remote Memory Access protocol.

The Packet Type field is 00b to indicate that this is a reply packet.

The Command and Source Path Address Length field are set to the same values as in the
command byte of the read-modify-write command. In the reply the Source Path Address
Length bits do not indicate extra words in the reply packet. They are just a copy of the
values in the original command.

The Status byte provides the status of the read-modify-write command. This is set to zero
if the command executed successfully and to a non zero error code if there was an error.
See error codes sub-clause 6.6.

The Transaction Identifier bytes are set to the same value as provided in the read-
modify-write command. This is so that the source of the command can associate the
reply with the original read-modify-write command.

The three Data Length bytes contain the length, in bytes, of the data that is to be read and
returned in the reply packet. The first byte sent is the most significant byte of the data
length. For a read-modify-write command the data length can be 0, 1, 2, 3 or 4 only. If
the read reply packet is indicating an error, i.e. the status byte is non-zero, then the Data
Length will normally be zero and there will be no data.

The Header CRC byte is an 8-bit CRC used to confirm that the header of the reply
packet has been received without error.

The Data bytes contain the data that has been read from the memory of the destination
node. When reading from memory organised in words (e.g. 32-bit words) then the first
byte sent is the most-significant byte of the word.

The Data CRC is an 8-bit CRC error check code used to confirm that the data was
correctly transferred.

EOP character is the End Of Packet market of the SpaceWire packet.

ECSS-E-50-12 Part 2 Draft C
29th March 2005

22

6.5.3 Read-modify-write action
The operation of the read-modify-write command is illustrated in the sequence diagram
of Figure 6-18.

RMW Request

RMW Data
Request

RMW
Command

RMW
Reply

RMW Complete
Confirmation

Source Destination

Data Read and Write
Authorisation

Write Data

Write Data
Indication

Figure 6-18 Read-Modify-Write Command/Reply Sequence

The read-modify-write command sequence begins when an application requests to
perform a read-modify-write operation (RMW Request). In reply to this the source node
builds the RMW command and sends it across the SpaceWire network to the destination
node (RMW Command). When the RMW Command arrives at the destination, the
header and data fields (including the mask bytes) are first checked for errors, since the
Verify Before Write bit is always set in the RMW command. If the header and the data
do not contain any errors then the user application at the destination node is asked if it
will accept the RMW operation (RMW Data Request). If the user application accepts the
request it will read the memory location(s) specified in the RMW command and return
the data to RMAP (Data Read and Write Authorisation). The data to be written to the
memory locations is then calculated from the data read from memory and the data and
mask fields of the RMW command. The new data is then written to the memory
location(s) that was previously read.

Once data has been written to memory the user application running on the destination
node is informed that a RMW operation has taken place (RMW Indication). Since the
acknowledgement bit (Ack/No_Ack) is always set for a RMW command, a reply will be
sent back to the source of the command containing the data originally read from the
destination memory (RMW Reply). When the write reply is received, the source node
indicates successful completion of the write request (RMW Complete Confirmation).

6.5.4 Read-modify-write errors
There are four principal types of error that can arise during a read-modify-write
operation: RMW Command Error, RMW Authorisation Rejection, RMW Reply Header
Error and RMW Reply Data Error.

The sequence of events that occurs when there is an error in the header of the RMW
command is illustrated in Figure 6-19.

 ECSS-E-50-12 Part 2 Draft C
29th March 2005

23

RMW Request
RMW
Command

Source Destination

Record
Packet
Error

Figure 6-19 Read-Modify-Write Command Header Error

The RMW command packet arrives at the destination and its header is found to be in
error. This fact is added to the error statistics in the destination node and the packet is
discarded. No other action is taken at the destination or source nodes.

The situation that arises when there is an error in the data field of the read-modify-write
command is shown in Figure 6-20.

RMW Request

RMW Data
Error Indication

RMW
Command
Header

RMW Data
Error Reply

RMW Data
Failure

Source Destination

Record
Data Error

RMW
Command
Data

Figure 6-20 Read-Modify-Write Command Data Error

The header of the RMW command has been received without error but the data CRC
indicates that there has been an error in the data field. The RMW command shall not be
executed. A data error is recorded in the destination node. The user application in the
destination node is informed that a RMW command has been received with corrupted
data. Since the header of the RMW command was intact it is also possible to report the
error back to the source. A RMW reply packet containing the appropriate error code is
sent back to the source node (RMW Data Error Reply). When this is received at the
source node the error is reported to the user application (RMW Data Failure). RMAP
returns the error code and the transaction identifier to the source node so that the user
application can determine the original of the RMW command and the type of error that
occurred.

If the RMW command is valid, the user application at the destination node is asked if it
will accept the RMW operation (RMW Data Request). If it rejects the RMW operation
(RMW Authorisation Rejection) then an RMW error reply is returned to the source node
(RMW Reply Error). This situation is illustrated in Figure 6-21. When the RMW Reply
containing the error code is received back at the source node, a RMW error indication
(RMW Failure) is signalled to the user application in the source node.

ECSS-E-50-12 Part 2 Draft C
29th March 2005

24

RMW Request

RMW Data
Request

RMW
Command

RMW Reply
Error

RMW
Failure

Source Destination

RMW
Authorisation
Rejection

Figure 6-21 Read-Modify-Write Authorisation Rejection

It is possible that the RMW reply is corrupted or for some other reason does not reach
the source node intact. This situation is illustrated in Figure 6-22.

RMW
Reply

Source Destination

Record
Packet
Error

RMW Request

RMW Data
Request

RMW
Command

Data Read and Write
Authorisation

Write Data

Write Data
Indication

Figure 6-22 Read-Modify-Write Reply Error

The data has been correctly written into destination memory and the destination
application has been informed. The RMW reply that is sent back to the source node is
corrupted. If the corrupted packet arrives at the source node (or indeed any other node) it
is recorded as a packet receive error.

6.5.5 Read-modify-write command parameters
The Read-Modify-Write Request has to provide the following parameters:

• Destination address
• Source address
• Transaction identifier
• Destination key
• RMW command
• Memory address

 ECSS-E-50-12 Part 2 Draft C
29th March 2005

25

• Data length
• Data
• Mask

6.6 Error codes
The possible error codes that can arise are listed in Table 6-1. These error codes are
returned in the status field of any reply including acknowledgements and error replies.

Table 6-1 Error Codes

Error Code Error Error Description
0 Command executed

successfully

1 General error code The detected error does not fit into the other
error cases or the node does not support
further distinction between the errors

2 RMAP command not
supported by node

The header CRC was decoded correctly but
the command byte is not accepted by the node

3 Invalid destination key The header CRC was decoded correctly but
the device key did not match that expected by
the destination user application.

4 Invalid data CRC Error in the CRC of the data field
5 Early EOP EOP marker detected before the end of the

data.
6 Late EOP EOP marker detected beyond the expected

end of the data.
7 Early EEP EEP marker detected before the end of the

data. Indicates that there was a
communication failure of some sort on the
network.

8 Late EEP EEP marker detected beyond the expected
end of the data. Indicates that there was a
communication failure of some sort on the
network.

9 Verify buffer overrun The verify before write bit of the command
was set so that the data field was buffered in
order verify the data CRC before transferring
the data to destination memory. The data field
was longer than could fit inside the verify
buffer resulting in a buffer overrun.
Note the command will not be executed in
this case.

10 Authorisation failure The destination user application did not
authorise the requested operation

11 RMW data length error The data in a RMW command does not match
the data length field or is invalid (01h, 03h,
05h, 07h or >08h).

ECSS-E-50-12 Part 2 Draft C
29th March 2005

26

6.7 Partial Implementation of RMAP
Partial implementations of RMAP are permitted where only some commands or
command options are supported. For example a unit might not implement the read-
modify-write command if it did not need it. If a destination receives a command or a
command with options that it does not support then it shall not authorise the command
for execution. If a reply or acknowledgement has been requested then the Authorisation
Failure error shall be sent back to the source, assuming that a reply has been requested in
the command.

6.8 RMAP Use Cases (informative)
RMAP is able to support many forms of system operation. In this section various
applications of the RMAP protocol are considered to illustrate the many ways in which
RMAP can be used. The interpretation of the contents of an RMAP command is
dependent upon the application. For example RMAP may be used to write to memory via
a DMA engine in the destination node, or it may write to memory via a host processor.
In either of these two cases the memory addresses specified in the RMAP command may
correspond directly to the memory address in the destination node that is to be written
to. Here the source node determines where in memory in the destination node the data is
to be written. Alternatively the memory address may be used to identify a mailbox or
buffer in the destination into which the data in the RMAP command may be placed
before being accessed by the destination application. In this case there is no direct
correspondence between the memory address in the RMAP command and the actual area
of memory where the data is finally written. The mapping between the two is up to the
destination node. This flexibility is one of the key features of RMAP.

6.8.1 Write to memory
This example assumes that the host application at the destination is a DMA controller
attached to a bank of memory. This is illustrated in Figure 6-23. Table 6-2 gives an
example of the corresponding RMAP command fields.

SpaceWire
Interface

RMAP
Interface

DMA Controller Memory

MemPtr = 001000h

DataCtr = 000010h
Data

Data

SpaceWire

SpaceWire-RMAP Interface Destination Application

Figure 6-23 Writing to memory with a DMA controller

Sixteen bytes of data are to be written into the destination memory starting at location
001000h. The destination memory, in this example, is 16-bits wide so the 16 bytes will
occupy eight 16-bit words of memory. The Increment bit in the write command is set to
indicate that the DMA controller should increment its memory address pointer after
every write to a memory location. An acknowledgement is required once the command
has completed.

 ECSS-E-50-12 Part 2 Draft C
29th March 2005

27

Table 6-2 Example RMAP command writing to memory

Field No. Bytes Value

Destination Path Address 0 -

Destination Logical Address 1 54h

Protocol Identifier 1 01h

Packet Type 01b

Command 1 1011b

Extra Source Path Address Length 00b

Extra Source Path Address 0 -

Destination Key 1 42h

Source Logical Address 1 76h

Transaction Identifier 2 0004h

Extended Write Address 1 00h

Write Address 4 0000 1000h

Data Length 3 00 0010h

Header CRC 1 xxh

Data 8 0001 0203 0405 0607

0809 0a0b 0c0d 0e0fh

Data CRC 1 yyh

TOTAL 25

The command sent is a write command with the Acknowledge and Increment bits both
set. The Verify Data Before Write is not set since, in this example application, it is not
deemed necessary to check that the data has been received correctly before writing the
data to memory. If there is an error in the data this will be indicated in the
acknowledgment and the RMAP command can be resent by the source if required. Note
that any resending is up to the source application and is not part of RMAP, although
RMAP does provide a Transaction Identifier field to help with this.

The Write Address in the RMAP command is set to 0000 1000h. The DMA controller, in
this example, can only access 16 M words of memory so the top eight-bits of the
memory address are not needed. They should be zero or the destination may reject the
command. This is up to the destination application. The Extended Write Address should
also be zero. The amount of data to be written (16 bytes) is specified in the Data Length
field. The full command for the example is given in the Table 6-2. Note that most of the
values in this table are example values and will change depending on the specific logical
address of the destination, etc.

When the RMAP command arrives at the destination node. It is checked by the RMAP
interface. If the header CRC is correct then the destination application is asked if it
wishes to accept the command. For a DMA controller it would normally accept the
RMAP command if the Write Address and Data Length specified an area of memory
within the range of the DMA controller. In the example this is the case, so the Write
Address is copied to the memory pointer in the DMA controller and the Data Length is
copied to the DMA Data Counter. Data from the RMAP command is then transferred to
the memory by the DMA controller. Two bytes of data are read from the RMAP

ECSS-E-50-12 Part 2 Draft C
29th March 2005

28

interface and buffered by the DMA controller before being written to memory. The
DMA Data Counter is then decremented by two, since two bytes have been written, and
the DMA Memory Pointer is incremented to point to the next 16-bit word. Alternatively
the Data Length could be divided by 2 when it is loaded into the DMA Counter, then it
would be decremented by one, each time a 16-bit value is written to memory. The way
that this is done is entirely dependent upon the destination application. When the entire
16-bytes of data have been written the DMA Counter will decrement to zero and the
RMAP command will be complete. The Data CRC will be checked and if it is correct
then the destination application will be informed that a successful transfer has taken
place. If there is an error in the data, indicated by an invalid CRC, then the destination
application will be informed of the error.

If an acknowledgement has been requested (acknowledgement bit set in the command)
then an acknowledgement will be returned to the source of the RMAP command. This
acknowledgement will indicate if any errors have occurred.

It is worth noting that in the example command, logical addressing is being used to
address the destination and source nodes: no path addressing is used. The destination key
is to ensure that the RMAP command is for the node where it ended up. The Destination
Logic Address should match the logical address of the destination and the Destination
Key must be a value known to both the source and destination. If the Destination Key is
not the value expected by the destination then the command will be rejected. There may
be one Destination Key value for all possible RMAP commands to a particular
destination, or there may be a different Destination Key value, for different types of
command or for different memory address ranges. This is up to the application. All that
is required is that the Destination Key in the command must be acceptable to the
destination application.

The Transaction Identifier in the RMAP command is not used by the destination
application, in this example. The destination application would take note of the
Transaction Identifier if, for example, it was important that data was not written twice to
the memory. This could happen if the acknowledgement sent back to the source was
corrupted or went missing and if the source then resent the RMAP command. In the
current example, it does not matter if the data is written twice to the memory. This would
be important if it were a control register or FIFO that was being written to.

Although, in this example, the Transaction Identifier is not needed by the destination
application, it is needed in the acknowledgement so that the source can associate the
acknowledgement with a particular command. Note that if the source only sends one
command at a time, waiting for any acknowledgement before proceeding, the value of
the Transaction Identifier is not important. In general it is good practice to have an
incrementing Transaction Identifier, incrementing for each new RMAP command that a
source sends out. This is, however, up to the application.

6.8.2 Read from memory
Reading from memory is similar to writing to memory and a DMA controller may be
used to control access to the memory, without a processor being present. In this example,
however, a processor is being used instead of a DMA controller to control access to
memory. This is illustrated in Figure 6-24.

 ECSS-E-50-12 Part 2 Draft C
29th March 2005

29

SpaceWire
Interface

RMAP Interface

Host
Processor

MemoryMem Addr Reg
SpaceWire

Data Len Reg

Data FIFO

Dest Key Reg

Processor
Bus

Status Reg

Figure 6-24 Reading from memory via a host processor

The RMAP interface is connected to the host processor and the memory by the processor
bus. The host processor can access the RMAP interface through a series of registers
which hold the fields of the current RMAP command. When an RMAP command is
received the RMAP interface writes the fields of the command to the registers in the
RMAP interface and then checks the header CRC. If the header CRC is valid then the
host processor is interrupted, or otherwise flagged, so that it knows a new RMAP
command has been received. The processor can then read the RMAP command
information from the registers in the RMAP interface. The processor then decides
whether it will accept the command.

If the command is not acceptable then the processor writes an appropriate error code to a
status register in the RMAP interface. The RMAP interface will then send an
acknowledgement containing the error code back to the source of the RMAP command,
assuming that an acknowledgement was requested in the command.

If the command is acceptable then the processor will use the Read Address and Data
Length information to perform the read operation. Words of data are read from memory
and written to the Data FIFO in the RMAP interface. The Data FIFO has the same data-
width as the memory and processor bus. The RMAP interface converts a (possibly)
multi-byte wide data stream from the Data FIFO to a byte-wide stream as the data is
passed to the SpaceWire interface. When the complete set of data has been read from the
memory and written to the Data FIFO the processor can indicate that it has finished by
writing to the status register in the RMAP interface.

An example of a RMAP command for reading data from memory is given in Table 6-3.

ECSS-E-50-12 Part 2 Draft C
29th March 2005

30

Table 6-3 Example RMAP command reading from memory

Field No. Bytes Value

Destination Path Address 0 -

Destination Logical Address 1 54h

Protocol Identifier 1 01h

Packet Type 01b

Command 1 0011b

Extra Source Path Address Length 00b

Extra Source Path Address 0 -

Destination Key 1 57h

Source Logical Address 1 76h

Transaction Identifier 2 0005h

Extended Read Address 1 00h

Read Address 4 0000 2000h

Data Length 3 00 0010h

Header CRC 1 xxh

TOTAL 16

This RMAP command is being sent from the source node with logical address 76h. It is
requesting to read 16 bytes of data starting at address location 2000h in the destination
node with logical address 54h.

6.8.3 Reading and Writing to Registers
RMAP can be used to write to configuration registers and to read from status registers in
a destination node.

Reading from a register is done in the same way as reading from memory. If more than
one register is to be read at a consecutive address then they may be read in one command
by setting the Increment Address bit in the command field. If the destination application
has registers which are wider than 8-bits then multiple bytes may be requested in a single
command. For example to read a 32-bit register at memory location 0020h a command to
read 4 bytes at location 0020h, with the Increment Address bit not set, may be used.

Writing to a register is identical to writing to memory except that normally when writing
to a register the RMAP interface would check that the data has been received correctly
before writing it to the register. This prevents an invalid value being written to a
configuration register, which could otherwise adversely affect the operation of the
destination node. To ensure that the data is correct before data is written to the register
the Verify Data Before Write bit has to be set in the Command field of the RMAP
command. If this bit is set the RMAP interface will buffer the complete Data field of the
RMAP command and check that the Data CRC is valid before writing the data to the
register. Multiple registers, with contiguous addresses may be written, or read, if the
increment address bit in the command field is set.

The Verify Data Before Write bit may also be set when writing to memory, but the
RMAP interface must contain enough buffer space to buffer the entire Data field of the
command so that it can be checked before any data is written to memory.

 ECSS-E-50-12 Part 2 Draft C
29th March 2005

31

6.8.4 Write to FIFO
Writing and reading from memory and registers is relatively straightforward with the
RMAP protocol. Reading and writing to a FIFO is a bit more involved. This is because
the FIFO may become full when writing, or empty when reading, and because it is not
normally possible to recover from writing erroneous data to a FIFO by resending the
correct data or to recover from loosing data read from a FIFO. Writing to a FIFO is
considered in this sub-section and reading from a FIFO is covered in the following sub-
section.

Writing to a FIFO is similar to writing to a register. The address of the FIFO is specified
in the Write Address and the Increment/No Increment Bit is not set so that the data is
written to the same address, that of the FIFO. The width of the FIFO can be any width
provided that the RMAP interface performs the buffering of data before it is written to
the FIFO.

A problem can arise if the FIFO becomes full. There are several possible ways in which
this can be handled depending upon the requirements of the specific application.

If the FIFO is unlikely to become full for very long then it may be adequate to block the
SpaceWire packet until the FIFO becomes not full again and can accept more data. The
RMAP header is read and checked and data then starts to be written from the RMAP
command data field to the FIFO. When the FIFO becomes full then no more data can be
written so the rest of the SpaceWire packet cannot be read into the RMAP interface and
remains in the SpaceWire network. When the FIFO can accept more data then more of
the data in the SpaceWire packet can be read. This approach should only be used when
the FIFO cannot become full for more than a very short time. It should also be noted that
if the data is not verified before it is written then it is possible that erroneous data gets
written into the FIFO.

An alternative approach when a FIFO becomes full is to stop writing to the FIFO and to
discard the remainder of a packet. In this case an acknowledgment should be sent to the
source of the RMAP command indicating the amount of data that was successfully
written to the FIFO. The source can then resend the data that was not written in the
previous command.

Another option is for the destination application to check how much room there is in the
FIFO when it receives the RMAP command header. If there is insufficient room then
either some of the data could be written and an indication of how much data was written
could be sent back to the source, or the entire packet could be discarded.

Yet another option is for the source application to check the status of the destination
FIFO by reading a status register, using an RMAP read command, thus finding out how
much room is left in the FIFO. It would then send data up to the limit of the FIFO.

The final option is the most robust approach for writing to a FIFO. Since writing
erroneous data to a FIFO is not desirable, it is better to send data for writing to a FIFO in
small packets which can be verified before being written to the FIFO. This means that
the entire data field of each command has to be buffered in the RMAP interface and
checked before writing. If there is no room in the FIFO the RMAP interface can wait for
the FIFO to start to empty without adversely affecting the operation of the rest of the
SpaceWire network. Once the complete set of data has been written to the FIFO an
acknowledgement can be sent to the source. The source can then send more data to the
FIFO. If the data is found to be in error it is discarded and not written to the FIFO. An
error code is then sent to the source and the source can resend the data. This may be
implemented as a FIFO which can take in data in 256 byte chunks (for example). Data
for the FIFO is sent in packets containing no more than 256 bytes. This data is written
into the FIFO as it arrives. At the end of the packet the Data CRC is checked and if OK
the data is accepted by the FIFO i.e. the FIFO write pointer is moved permanently to the
end of the new data and the FIFO can read this new information. If there is an error in
the data that has just been written then the write pointer is set to the start of the new data,
as if it had not been written.

ECSS-E-50-12 Part 2 Draft C
29th March 2005

32

6.8.5 Read from FIFO
Reading from a FIFO has a similar problem to writing to a FIFO. In this case, however,
the FIFO may become empty during a read. For example, a read from a FIFO may
request 100 bytes of data but the FIFO becomes empty after 20 bytes.

If the FIFO is unlikely to be empty for very long, the RMAP interface may wait for more
data to become available, adding it to the end of the packet that is being sent as soon as
possible. This does leave a packet strung out through the SpaceWire network while
waiting for the rest of the data, which may adversely affect other traffic on the network.

An alternative is for the RMAP interface to stop reading the FIFO if it becomes empty
and for it to send whatever data it has read in the reply to the command. In this case the
reply to the read request would be terminated early, returning only the amount of data
read. The reply would then contain the data field set to the desired amount of data (e.g.
100 bytes) but only 20 bytes would be attached to the packet. The 20 bytes of data would
be followed by the 2-byte Data CRC code and the packet would be terminated by an
EOP. The EOP would indicate that this was a valid packet, not one that was truncated by
an error during transit across the network, in which case an EEP would have terminated
the packet. To prevent the two bytes of the Data CRC being accepted as data by the
source node the source must buffer the last two bytes received and check that they were
not the last two bytes of the packet, before using them. If a read FIFO reply is received
with less than the expected amount of data then the source may send another read request
for the rest of the data (e.g. the remaining 80 bytes) or it may read the status of the
destination first to check what happened.

Another possibility is for the RMAP interface in the destination to check the amount of
data in FIFO first before it reads it. It can then return the actual amount of data read in
the Data Length field of the reply, along with that much data.

A final option is for the FIFO data to be read into a buffer in the RMAP interface before
the reply is sent. The correct amount of data can then be gathered, waiting if necessary
for data to become available in the FIFO. Once the required amount of data has been
read the reply can be sent in one go. This does require buffering in the RMAP interface
which limits the amount of data that can be read in a single command. If the FIFO
becomes empty for a long period of time then it may be appropriate for the RMAP
interface to send what data it has got, indicating that the full amount of data could not be
read within the time available. This approach could use the memory in the FIFO if, as for
the write FIFO case, reading data from the FIFO was organised in chunks. Taking the
same example as for the write FIFO case of 256 bytes chunks to be read from the FIFO,
when an RMAP read command is received 256 bytes of data are read from the FIFO and
returned to the source of the command. The read pointer of the FIFO is not updated until
another read command is received with a different transaction identifier to the one that
caused the last read. If the transaction identifier is the same as the previous read
command then the same data can be sent again.

There are many ways in which FIFO type operations can be supported by RMAP. The
choice depends upon the particular application requirements. What RMAP provides is a
consistent means of using SpaceWire packets to perform a wide range of application
functions.

6.8.6 Write to Mailbox
RMAP supports reading and writing to mailboxes. A mailbox is a means passing data to
an application without writing directly to memory in the application. The mailbox is an
area of memory made available to the RMAP interface by the application and which has
been given a unique identifier. This identifier is an RMAP write memory address which
is reserved for accessing the mailbox. Many mailboxes may be used, as required by the
application.

Writing to a mailbox is the same as far as RMAP is concerned as writing many bytes to a
single address location. For example, the RMAP command in Table 6-4 writes a message

 ECSS-E-50-12 Part 2 Draft C
29th March 2005

33

to a mailbox. Source address 76h is writing to mailbox zero in destination 54h. The
mailbox address space in this example is differentiated from the normal directly writable
memory space by the value of the Extended Write Address byte: when it is zero the
Write Address accesses up to 4G locations of directly addressable memory. When it is
01h it references the mailbox space, allowing up to 4G mailboxes to be specified. Note
this is an example use of the Extended Write Address byte. The Write Address is 0000
0000h referencing mailbox zero. The Increment Address bit is not set in the command
byte and the Data Length is 16 bytes. The Destination Key is set to a value agreed by the
source and destination to give access to the mailbox.

Table 6-4 Example RMAP command writing to mailbox

Field No. Bytes Value

Destination Path Address 0 -

Destination Logical Address 1 54h

Protocol Identifier 1 01h

Packet Type 01b

Command 1 1010b

Extra Source Path Address Length 00b

Extra Source Path Address 0 -

Destination Key 1 99h

Source Logical Address 1 76h

Transaction Identifier 2 0006h

Extended Write Address 1 01h

Write Address 4 0000 0000h

Data Length 3 00 0010h

Header CRC 1 xxh

Data 8 0001 0203 0405 0607

0809 0a0b 0c0d 0e0fh

Data CRC 1 yyh

TOTAL 25

When this command is received at the destination the header is first checked to make
sure that there are no errors and then the fields of the command are authorised by the
application. Assuming that all is in order, the application authorises writing to the
mailbox.

One possible implementation of the mailbox system is a DMA based mailbox controller.
This is illustrated in Figure 6-25. The mailbox DMA is configured by a host processor,
or may have a predetermined configuration. There is a DMA channel for each mailbox.
Each mailbox has a mailbox base pointer which determines where in memory the
mailbox memory resides, and a mailbox maximum size which specifies the size of the
mailbox memory. A mailbox status register holds the status of the mailbox, for example,
whether the mailbox is empty or is in use.

ECSS-E-50-12 Part 2 Draft C
29th March 2005

34

SpaceWire
Interface

RMAP
Interface

SpaceWire-RMAP Interface Destination Application

Mailbox DMA

Mailbox Base Ptr
Mailbox Current Ptr
Mailbox Max Size

Mailbox Status

Mailbox Data Size

Memory

Mailbox Memory
Mailbox Memory

Mailbox Memory

Figure 6-25 Writing to mailbox

The RMAP command to write to a mailbox will be authorised if the command references
a mailbox which is not currently in use, if the amount of data to be written is no larger
than the size of the mailbox, and if the Destination Key is valid for that mailbox. The
mailbox current pointer will be set to point to the start of the mailbox, by loading it with
the contents of the mailbox base pointer. The data size will be loaded with the data
length from the RMAP command. Data will then be transferred into the mailbox memory
from the RMAP command. If the data is transferred successfully with no error, then the
mailbox status will be updated and the host application will be informed that data is
ready in the mailbox. An acknowledgment will be sent to the source indicating that the
data has transferred correctly. If the data contains an error, then the mailbox status will
reflect this and the mailbox will be considered empty. In this case the acknowledgement
sent to the source will indicate the error and the mailbox write command can be resent, if
required.

Mailbox status information may be read over SpaceWire using an RMAP read register
command.

6.8.7 Read from Mailbox
Reading from a mailbox is similar to writing multiple data to a register or FIFO. The
read is done referencing a mailbox address with the Read Address. An example RMAP
command for reading from a mailbox is given in Table 6-5.

 ECSS-E-50-12 Part 2 Draft C
29th March 2005

35

Table 6-5 Example RMAP command reading from mailbox

Field No. Bytes Value

Destination Path Address 0 -

Destination Logical Address 1 54h

Protocol Identifier 1 01h

Packet Type 01b

Command 1 0010b

Extra Source Path Address Length 00b

Extra Source Path Address 0 -

Destination Key 1 88h

Source Logical Address 1 76h

Transaction Identifier 2 0007h

Extended Read Address 1 01h

Read Address 4 0000 0001h

Data Length 3 00 0010h

Header CRC 1 xxh

TOTAL 16

In this example source 76h is requesting to read 16 bytes from mailbox one in
destination 54h. If the referenced mailbox contains data and the command is acceptable,
then the contents of the mailbox is returned to the source node in the reply packet. If the
mailbox does not have the full amount of data requested then the Data Length field in the
reply would be set to the amount of data that was in the mailbox and only this amount of
data would be returned in the reply.

Note that mailboxes may, if required by the application, be bi-directional i.e. able to
accept both read and write commands. This permits one node to write data into a
mailbox in another node, which is subsequently read by a third node.

6.8.8 Repeating Transaction ID
If an acknowledgement to a write command fails to be received then it is possible that
the command was received and executed by the destination, but the acknowledgement
failed to get through successfully. If writing to a command register or to a FIFO it may
be important that the same information is not written a second time. The source user
application may send the same command again using the same transaction identifier. The
destination user application may then use this repeated transaction identifier to prevent
writing the same information to the command register or FIFO.

ECSS-E-50-12 Part 2 Draft C
29th March 2005

36

6.9 RMAP Command Summary
The RMAP command codes and their meanings are listed in Table 6-6.

Table 6-6 RMAP Command Codes

Bit 5 Bit 4 Bit 3 Bit 2 Command Field

Write/

Read

Verify
Data
Before
Write

Ack Increment
Address

Function

0 0 0 0 Not used

0 0 0 1 Not used

0 0 1 0 Read single address

0 0 1 1 Read incrementing addresses

0 1 0 0 Not used

0 1 0 1 Not used

0 1 1 0 Read-Modify-Write single address

0 1 1 1 Read-Modify-Write incrementing addresses

1 0 0 0 Write, single address, don’t verify before
writing, no acknowledge

1 0 0 1 Write, incrementing addresses, don’t verify
before writing, no acknowledge

1 0 1 0 Write, single address, don’t verify before
writing, send acknowledge

1 0 1 1 Write, incrementing addresses, don’t verify
before writing, send acknowledge

1 1 0 0 Write, single address, verify before writing,
no acknowledge

1 1 0 1 Write, incrementing addresses, verify before
writing, no acknowledge

1 1 1 0 Write, single address, verify before writing,
send acknowledge

1 1 1 1 Write, incrementing addresses, verify before
writing, send acknowledge

