
Eonic 11/11/2004

1

11-11-2004 Copyright Open License Society 1

SpaceWire Working group 11th Nov 2004

SpaceComRTOS

A distributed formal RTOS adapted to
SpaceWire enabled systems

Eric.Verhulst@OpenLicenseSociety.org

www.OpenLicenseSociety.org

11-11-2004 Copyright Open License Society 2

The target

‚LAN‘

Cluster

‘Host’ Node
(PC, WS)

WAN Communication

X

Payload system (1:N) Mission control

Ground section

Processing
nodeI/O

Space
Wire‘

Eonic 11/11/2004

2

11-11-2004 Copyright Open License Society 3

MP-SoC target

• No general solution on the market !
• Severe memory constraints
• Needs : low latency, high bandwidth, use few resources
• FPGAs with softcores can put lowest layers in logic fabric

11-11-2004 Copyright Open License Society 4

Core functionalities
(applying to distributed embedded systems)
• Multi-tasking (or: processes, threads, ...)

• Best paradigm for executing multiple functions on same processor
• Provides modularity and information hiding for software development
• Needed to reduce idle time while waiting for communication
• Sleep modes during idle time saves power
• Allows concurrency with system level support

• Scheduling
• Static only for synchronuous dataflow
• Dynamic for meeting real-time constraints

• Synchronisation
• With hardware
• Between tasks

• Communication
• Idem
• Application independent link drivers

• Memory management
• Resource management

Eonic 11/11/2004

3

11-11-2004 Copyright Open License Society 5

Some requirements

• Portability:
• across processor types
• across communication backbones
• across heterogenuous systems
• cross-development on host

• Scalabilty:
• from SP to MP to loosely coupled
• local support as well WLAN support
• user extensible
• topology independent:

• build routing and buffering
• ‚distributed semantics‘

• Performance
• real-time scheduling and real-time communication
• low latency, low memory foot print

• Reliability
• correctness by design
• ‚trust-worthy component‘

11-11-2004 Copyright Open License Society 6

General architecture

Board Hardware

Ha rdware abstraction Layer (HAL)

Distributed RTOS
BSP

Distributed
RTOS

Router
and RPC
support

Null OS
BSP

Single CPU
RTOS

Application

L0

L2
L1

Eonic 11/11/2004

4

11-11-2004 Copyright Open License Society 7

OpenComRTOS
• Scalable distributed RTOS based on message passing

• actually: scalable communication layer with scheduling support

• distributed semantics (transparant parallel programming)
• formally analysed and validated

• extensive system-wide message passing protocols
• using formal model checkers (e.g. based on CSP)

• safety and security by compatible plug-ins/extensions
• same external behavior, but blocking ‚faults‘ and ‚intrusions‘

• 3+ layers :
• (NULL-OS)-L: testing and local I/O
• LO

• very small (1 K), core primities, core system packects
• typical use : MP-SoC, DSPs
• includes scheduler, low latency router and drivers

• L1
• sema, queue, mailbox, resources, ...: traditional RTOS services
• emulate RTOS (but often only SP), cabinet level

• L2
• supports widely distributed operation, RT-CORBA

11-11-2004 Copyright Open License Society 8

OpenComRTOS

HeaderL0 DataL0/HeaderL1

DataL1/HeaderL2

DataL2

L0

L1

L2

OpenComRTOS: Level L2

- variable size packets
- widely distributed adressing
- dynamic protocol packets
- extensible API

OpenComRTOS: Level L1

- fixed size packets
- cluster adressing
- dynamic protocol packets
- API emulation

OpenComRTOS: Level L0

- fixed size packets
- tightle clustered adressing
- static protocol packets
- system packets
- scheduler
- runtime monitor

Packet structure
SpW

hardware
support or
tunneling
protocol

• semaMW (system-wide)
• peek-poke (system-wide)
• target : 1K code

• std RTOS
• target : 10-20K

• public connections
• target : 100-500K

Eonic 11/11/2004

5

11-11-2004 Copyright Open License Society 9

Development and target environment

•

11-11-2004 Copyright Open License Society 10

Different protocols: permanent presence

• Boot packets
• Command packets
• Data packets
• Debug packets
• Logging packets ?
• I/O packets ?
• ... NOT TOO MANY !
• Each protocol has ‚sub-states‘ (sequence-chart)
• Protocols must be hierachical, reflected in datastructures
• All can map on protocol identifiers
• Standardisation needed for interoperability

Eonic 11/11/2004

6

11-11-2004 Copyright Open License Society 11

NULL-OS layer

• Hardware semi-dependent layer: no scheduling
• Important for diagnostics, debugging, booting phase

• minimum interference with OS en hardware
• not intended for operational use

• Worm: map out existing topology
• Netloader: boot complete system via links

• from ‚host‘ (mission controller) or safe mass-memory
• processors
• peripherals (INT‘s, SMCS, ...)
• flash, eprom, ..
• option: floodfiller

• I/O with hostserver during development or during operation
• access to hostservices and ports
• can be remote over e.g. ground connection

• Not limited list of services: see document
• Board and processor specific variations
• Standardisation helps in portability

11-11-2004 Copyright Open License Society 12

L0

• Minimum ‚RTOS‘
• scheduling
• routing
• buffering

• Minimum set of primitives
• SemaSetMW
• SemaGetMW
• Peek (remote or local read)
• Poke (remote of local write)
• or just a Move (distributed memcopy) ?
• SetScheduling

• Target code size: 1K

Eonic 11/11/2004

7

11-11-2004 Copyright Open License Society 13

L1

• Higher level, traditional RTOS services
• but most RTOS semantics are not suitable!

• Local events (binary)
• Distributed:

• counting semaphores
• queues
• mailboxes
• pipes
• memory maps
• resources
• process control

• Group operations
• Many-to-many semantics
• Blocking, non-blocking, time-outs
• Emulation of COTS RTOS (within limits)
• Target codesize: 10-20K

11-11-2004 Copyright Open License Society 14

L2

• Mostly open
• Primitives to define new packets and protocols

• CreatePacket
• SendPacket
• ReceivePacket
• DefineService
• CallService

• Should allow to run across heterogenuous, ‚alien‘ networks
using tunneling

Eonic 11/11/2004

8

11-11-2004 Copyright Open License Society 15

(Link) Drivers

• Three types:
• Point-to-point: between directly connected nodes, no protocol
• Direct-to-I/O: between node and I/O, I/O specific protocol
• NetLink drivers: to provide virtual connections with system-level protocol

• Error recovery and faults
• make maximum use of SpaceWire support (rather unique in world!)
• principle:

• layered transaction protocols with ACKs
• failures and errors at lowel level are invisible at higher levels:

– build-in safety support, but as an option

• allows to program application independently of fault support mode

11-11-2004 Copyright Open License Society 16

System wide addressing issues

• In order to provide transparency at runtime, each destination
of source should have unique identifier

• Tree-structered domains, scope issues
• Cfr. IPv4 or IPv6 addressing
• What can have an address or logical ID ?

• task or processor
• I/O port
• link port
• host node
• ...

Eonic 11/11/2004

9

11-11-2004 Copyright Open License Society 17

Remaining issues

• Trade-offs remain a developer‘s issue. Low level programming
still possible but to be used with care

• Support for static operation vs. dynamic operation
• Trade-off between portability, performance, development time

and development reliability
• Likely not possible or even desired that all hardware features

are supported (possible conflicts)
• Better a simple design that works than a complex one (with

many features) that is not fully predictable
• Better a simple design that is a bit slower on average than one

that is faster some of the times

