
Protocol Validation
System for On-Board

Communications

PVS Phase 1 Final Presentation

SpaceWire WG #14, 22nd February 2010
Noordwijk, Netherlands

PVS Rationale

The basic motivation is to provide an open, generic and fully integrated protocol
validation system (PVS) for satellite on-board communications supporting multiple
physical interfaces (SpW, MIL-STD-1553) and functionalities (emulation, validation,

interworking testing, monitoring).

• A protocol validation tool with more than 20 years of experience in the
telecommunication sector. & with hundreds of installations worldwide

• Has been widely used for testing various telecommunication networks (ISDN, V5,
SS7, IN, GSM, UMTS, VoIP, custom)

• Current evolution of satellite on-board communications, require the development
& experimentation with new dedicated communication protocols and services (SpW,
SOIS, etc.)

• New generation of validation tools is required to support advanced protocol
development, test, integration & validation

+

=

PVS at a glance

PVS foreseen features

 DEVICE EMULATION: economic & portable replacement of a network element in the
testbed

 PROTOCOL EMULATION: experimentation with various protocol features
(parameterization of protocol variables, exclusion/inclusion of protocol optional functions,
combination of multiple protocols)

 CONFORMANCE TESTING: execution of tests to ensure that a device (System Under
Test) is operating in compliance with the applicable ECSS and CCSDS standards.

 FAULT-INJECTION: injection of errors at various protocol layers to validate the
response of the devices/networks in erroneous conditions

 TRAFFIC GENERATION: generation of traffic for validation of higher layer protocols or
bulk traffic injection at lower layers for performance evaluation and network
dimensioning

 NETWORK MONITORING: network monitoring, through direct physical traffic
acquisition (network statistics, error detection, troubleshooting)

Current contract technical objectives

 PVS Phase 1 (Feb 2009 – Jan 2010):

 Requirements capturing & analysis, based on requirements by ESA and
EADS Astrium, and top level partitioning

 Technology review on related technologies, tools and protocols

 Identification of SpW-T features to validate

 Realisation of a PVS proof-of-concept prototype for SpW networks

 Evaluation and demonstration of the PVS with SpW-T and GAMMA
protocols

 Development plan definition for the full PVS

Results: Hardware platform

 4 SpW ports
 FPGA protection
 Fine (KHz) Tx clock granularity
 trigger I/F
 > 300 Mbps SpW Line Rate

Results: Integration with SAFIRE graphical tool chain

Results: Validation of SpW-T and GAMMA protocols

PVS Phase 1 System Architecture
FP

G
A

Lo
gi

c
H

os
t P

la
tfo

rm

SpW/SpW-T FPGA

SpW-T Block

 Segmentation

 End to End flow Control

X SBFCT support

X BFCT Timeout/
Retransmission

 Acknowledgement

 Address Translation

X Path addressing

 PDU Encapsulation

 Resource Reservation

 Error Detection

 Header/data CRC

 Sequence Number

 Missing ACK

SpW-T Implementation metrics
Registers LUTs Slices BRAMs

Segmentation 106 197 66
Tx Encapsulation 671 1182 552 8
Tx Acknowledgement 619 837 35 1
Tx Flow Control 50 124 66
Resource Reservation 354 325 250
Rx Encapsulation 400 341 295 1
Rx Acknowledgement 70 141 78
Rx Flow Control 64 123 60
Reassembly (Logic) 170 164 96
Reassembly (Buffers) 588 412 464 4
Tx Statistics 18 86 35 1
Rx Statistics 22 259 116 3
SpW-T Block 3313 4639 2405 18

Registers LUTs Slices BRAMs
SpW-b Core 520 528 383 2

Registers LUTs Slices BRAMs
Tx DMA Arbiter 621 677 337
Rx DMA Arbiter 540 964 363
Pointers Bank 204 147 110 2

Registers LUTs Slices BRAMs
PVS with 2 x SpW/SpW-T 20786 26942 13360 64

SpW-T Test Bed

Traffic spying

SpW ROUTER

DSI Configuration /
SpW packets

PVS SpW-T tested against SpW-T
SW implementation on Linux 2.6
using 4-Links DSI

 4Links FSR router
Monitoring through Star-Dundee IP

Tunnel
Remote integration tests through

internet
Same tests executed in remote &

local configurations
Endurance testing executed on

Scheduled mode with transfers on
more than 12 hours (65 GB logfile)

GbSwitch
PC

DSI

FSR

PVS

Gbit Ethernet
SpaceWire
USB

Tunnel

DSI scripts/
DSI SW

SpW-T Test Results

Description Error injected Error detected Verdict

Nominal asynchronous/Scheduled communication - - PASS

Asynchronous/Scheduled communication with error

SQ YES PASS
Length YES PASS

HDR CRC YES PASS
Data CRC YES PASS

Asynchronous communication with missing ACK ACK inhibit YES PASS

Asynchronous communication with invalid ACK
CH YES PASS
SQ YES PASS

CRC YES PASS

Asynchronous communication without congestion - - PASS

Asynchronous communication with congestion - - PASS

Scheduled communication without congestion - - PASS

Scheduled communication with congestion - - PASS

SpW-T V3.1 specification/implementation issues
 Error handling is restricted to data errors

 Timing errors are not addressed (e.g. Time Code loss)

 Action to perform in case of error at the level of application is not defined

 Problem with BFCTs during initialization. If destination sends BFCTs while source is not
ready the BFCT is lost. The destination shall retry until BACK is received. How many times?

 The SBFCT time constraint (3 us in the example of the V3.1 spec.) not realistic for SW
implementation & requires high speed HW operation (> 100MHz)

 Need to access the Token buffer through the application (e.g. in case of PDU loss the
BFCT is consumed and never received from the remote side)

 SQ storage at various functions requires many memory resources

 The need for separate UDS buffers at the receiver increases memory needs even more

 Other minor issues (e.g. values not specified for DP, ACK/SACK, BFCT/SBFCT, BACK)

Issues to be considered on the next spec. revision - Acknowledgement (1/2)

 Handle out-of-order ACKs
 Compensate for ACK losses P

D
U

 S
en

t

For the acknowledgement function the handling of (S)ACKs when multiple SpW-T
channels are used, forced us to implement a common Timeout FIFO, which
significantly complicates the design of the “timer invalidation” block in order to:

Resource
Reservation

DP[N, SQN]

DP[P, SQP]

DP[R, SQR]

1

2

3
Router

Remote
System 1

Remote
System 2

N SQN

P SQP

R SQR

Timer Invalidation

Timer

ACK[N, SQN] 4

ACK[R, SQR]5

ACK[R, SQR]6

Timer Invalidation logic cannot
delete the R, SQR entry. It shall:
1)buffer the R, SQR event,
2)Wait for N, SQN timeout
3)Wait for P, SQP (S)ACK or
timeout
4)Invalidate the R, SQR entry
5)Clear the R, SQR event

Issues to be considered on the next spec. revision - Acknowledgement (2/2)

Problem: The combination of {Destination Address,
Channel ID, Source Address} do not form a contiguous
address space
Look up cannot be performed to associate this
combination with a certain flow
The search shall be performed by several SpW-T
functions (Reassembly, Acknowledgement, Flow Control)
Alternatives: A Classifier block, replacing the {Destination
Address, Channel ID, Source Address} combination with a
FlowID was developed
CAM based: Expensive, slows down overall performance
Linear search: Slow, not scalable
Binary search: Scalable but more complex

Issues to be considered on the next spec. revision – Channels handling

Conclusions

 PVS/DSI is among the first validated SpW-T implementations

 Current specification (v3.1) has several open issues

 Next specification revision shall heavily consider:

 Implementation issues (!)

 Error handling at application level

Contact

Antonis Tavoularis,
Vangelis Kollias

TELETEL SA
A.Tavoularis@TELETEL.eu

V.Kollias@TELETEL.eu
www.teletel.eu

Christophe Honvault
EADS Astrium SAS Satellites

christophe.honvault@astrium.eads.net
www.astrium.eads.net

