

The SpaceWire-PnP Protocol: UoD Document Version 2.1

Peter Mendham

25 February 2010

Agenda

Space Technology Centre

- Requirements and aims
- > RMAP usage
- > SpaceWire-PnP services
 - > Device Identification
 - > Network Management
 - > Link Configuration
 - > Router Configuration
- Extensibility and capabilities
- > Applying SpaceWire-PnP
- > Known issues and discussion points
- > How to use the UoD document

SpaceWire-PnP Aims

> Protocol aims

Space
Technology
Centre
University of Dundee

- Interoperability and reuse
- > Standard mechanisms for standard features
- > Support device/network discovery as required by SOIS
- > Document aims
 - > A complete solution
 - > A starting point for discussion

Perspective

PnP views the network like the SpaceWire standard

Space
Technology
Centre
University of Dundee

- > Links
- NodesRoutersDevices
- No topology restrictions
- > Both nodes and routers have links
 - > Nodes have 1 or more links
 - > Routers have 2 or more links
- Every device on the network has a port zero
 - > This is the target for PnP transactions

Levels of Support

Space Technology Centre

- Managed Networks
 - > Important role for system designer
 - Competition during discovery process removed by design
 - Competition for configuration of devices removed by design
 - > Simplest case
- Open Networks

Level 2

Level 1

- Network handles all competition issues
- Deals with networks where design is **not** known a priori
- > More flexible but more complicated

What is Standardised?

> A set of parameters on the target

- Space
 Technology
 Centre
 University of Dundee
- > This is a standardised RMAP address space
- > An interface of primitives at the initiator
 - > Satisfying the requirements for SOIS
- A description of how the initiator and target will both behave

RMAP Utilisation

Semantics required for plug-and-play closely match RMAP

Space
Technology
Centre
University of Dundee

- Use a well-defined implementation of RMAP
 - > 32-bit wide addressing and alignment
 - > Big endian
 - Incrementing addressing
 - > Acknowledged, verified writes
 - > Pre-defined key
 - > RMW implementation (optional) is a conditional write
- > Use a different protocol ID
 - > To distinguish from generic RMAP traffic
 - > E.g. Mass memory device

So is SpaceWire-PnP a Protocol?

Space Technology Centre

- > Probably not...
 - A specific implementation of RMAP
 - > Standardised address space
 - > Standardised primitives
 - > Standard semantics of use
 - > Identified with a protocol ID
- > Does that make it a protocol?

Target Parameters

- > Follow a regular form
- > Parameters are made up of 32-bit *fields*
- > Optionally, a parameter may have multiple entries
 - > This is to permit tables, such as routing tables
 - > The *root entry* has one set of fields
 - Every other non-root entry has a different but identical set of fields
- For example, the link configuration parameter
 - Root entry has one field giving the number of links
 - Has a non-root entry for each link, each of which has the same fields

Core Services

Space Technology Centre

- > Four core services defined
 - > Device Identification

 - > A few, mirrored, read-only dynamic fields
 - > Network Management
 - > Link Configuration
 - > All devices
 - > Router Configuration
 - > Routers only

Necessary for

Basic discovery

SpaceWire-specific

configuration

> Optionally, there is also a time-code source

Device Identification Service

- Permits the gathering of device information
- Space
 Technology
 Centre
 University of Dundee

- Including type of device
- > Parameters:
 - > Device Information
 - > Vendor String (Optional)
 - > Product String (Optional)
 - > Device Status
 - Capability List

Device Information and Status

- > Identifies the device
 - > Vendor ID and Product ID (like PCI, USB etc.) Centre (Versity of Dund
 - > Type (node/router)
 - > Number of ports
 - > Optional static device ID
 - > Vendor and Product string lengths
- > Provides current status
 - > Active ports
 - > Device ID (non-static)
 - > Return port

Read-Only and Constant (PROM)

Read-Only and Dynamic, Mirrored

Example Parameter Fields

	^	
		7

Table 5-3: Device Information Parameter Fields Space Technology				
ID	Name	Summary Centre University of Dundee		
0	Vendor ID/ Product ID	Contains 16-bit vendor and product IDs		
1	Region/Number of Ports	Indicates preferred device region gives port count		
2	Static Device ID High	High 32 bits of the 64-bit static device ID (if present)		
3	Static Device ID Low	Low 32 bits of the 64-bit static device ID (if present)		
4	Version/Instance ID	Version and System instance of this device type		
5	Operation/String Lengths	Length of the vendor and product strings (can be zero)		
6-31	Reserved	Reserved for future use		

DIDS Primitives

Space Technology Centre

- > DIDS_READ_INFO.request
- > DIDS_READ_INFO.indication
- > DIDS_READ_VENDOR_STRING.request
- > DIDS_READ_VENDOR_STRING.indication
- > DIDS_READ_PRODUCT_STRING.request
- > DIDS_READ_PRODUCT_STRING.indication
- > DIDS_READ_STATUS.request
- > DIDS_READ_STATUS.indication
- > DIDS_READ_CAPABILITY_LIST.request
- > DIDS_READ_CAPABILITY_LIST.indication

DIDS Example Initiator Primitive

Space
Technology
Centre
University of Dundee

- > DIDS_READ_INFO.request
 - > RMAP_Parameters
- > DIDS_READ_INFO.indication
 - > Result
 - > Vendor_ID
 - > Product_ID
 - > Preferred_Region
 - > Router_Node
 - > Support_Level
 - > Port_Count
 - > Device_ID
 - > Version
 - > Instance_ID

Network Management Service

Permits the unique identification of devices

Space
Technology
Centre
University of Dundee

- > Enables network discovery
- > Parameters:
 - > Read-write network ID (just a 32-bit register)
 - > Logical address (for nodes only, and optional)

NMS Primitives

Space Technology Centre

- > NMS_READ_NETWORK_ID.request
- > NMS_READ_NETWORK_ID.indication
- > NMS_WRITE_NETWORK_ID.request
- > NMS_WRITE_NETWORK_ID.indication
- > NMS_READ_DEVICE_LA.request
- > NMS_READ_DEVICE_LA.indication
- > NMS_WRITE_DEVICE_LA.request
- > NMS_WRITE_DEVICE_LA.indication
- > NMS_DISCOVER_NETWORK.request

> NMS_DISCOVER_NETWORK.indication

Optional

Link Configuration Service

Determine number and status of links

Space
Technology
Centre

- > Configure links
- > Parameters:
 - > Link activity, as a bit field
 - > Reference transmit rate
 - Configuration for each link
 - > Link type and status/errors (read-only)
 - > Transmit rate
 - > Link state

Transmit Rate Abstraction

- > Designed to be simple and flexible
 - > And reflect current practice
- > Control of **reference rate** for all links
- Control of link rates individually
- Each rate can be controlled either as a numeric rate, or as a divider

LCS Primitives

Space Technology Centre

- > LCS_READ_PORT_ACTIVITY.request
- > LCS_READ_PORT_ACTIVITY.indication
- > LCS_READ_REFERENCE_RATE.request
- > LCS_READ_REFERENCE_RATE.indication
- > LCS_WRITE_REFERENCE_RATE.request
- > LCS_WRITE_REFERENCE_RATE.indication
- > LCS_READ_LINK_CONTROL.request
- > LCS_READ_LINK_CONTROL.indication
- > LCS_WRITE_LINK_RATE.request
- > LCS_WRITE_LINK_RATE.indication
- > LCS_WRITE_LINK_PRIORITY.request
- > LCS_WRITE_LINK_PRIORITY.indication
- > LCS_WRITE_LINK_STATE.request
- > LCS_WRITE_LINK_STATE.indication

Router Configuration Service

Space Technology Centre

- > Only for routers (obviously)
- > Router configuration and status
- > Parameters
 - > Router configuration
 - > Watchdog timeout (optional)
 - > Arbitration mode
 - > Time-code counter control
 - > Routing table
 - > Port association
 - Mechanism and arbitration control
 - > Partial implementations permissible

RCS Primitives

Centre

Technology University of Dunder

- RCS_READ_WATCHDOG_TIMEOUT.request
- RCS_READ_WATCHDOG_TIMEOUT.indication >
- RCS_WRITE_WATCHDOG_TIMEOUT.request >
- RCS WRITE WATCHDOG TIMEOUT.indication >
- RCS_READ_ARBITRATION_MODE.request
- RCS_READ_ARBITRATION_MODE.request >
- RCS_WRITE_ARBITRATION_MODE.request >
- RCS WRITE_ARBITRATION_MODE.request >
- RCS_READ_TIME_COUTER.request >
- RCS_READ_TIME_COUTER.indication
- RCS_RESET_TIME_COUTER.request >
- RCS_RESET_TIME_COUTER.indication >
- RCS_ENABLE_TIME_COUNTER.request >
- RCS ENABLE TIME COUNTER.indication >
- RCS_READ_LA_COUNT.request >
- RCS_READ_LA_COUNT.indication >
- RCS_READ_ROUTING_TABLE_ENTRY.request >
- RCS_READ_ROUTING_TABLE_ENTRY.indication >
- RCS_WRITE_ROUTING_TABLE_ENTRY.request >
- RCS_WRITE_ROUTING_TABLE_ENTRY.indication >

Summary So Far

> Have presented

- > Principles of SpaceWire-PnP
- > Which bits are standardised
 - > RMAP usage
 - > RMAP address space (parameters)
 - > Primitives
- > Functions logically grouped into services
 - > Device Identification Service
 - > Network Management Service
 - > Link Configuration Service
 - > Router Configuration Service

SpaceWire-PnP Extensibility

- > SpaceWire-PnP is a convenient mechanism for Space Technology detecting and configuring
- Can it be used as a "gateway" to more functionality?
- > Devices can define their capabilities
 - > Identifiable feature set
 - > Supported by a SpaceWire-PnP service
 - > Parameters
 - > Primitives
 - Permits identification and configuration of the capability

Capabilities

Device can provide a list of capabilities

Space
Technology
Centre

- Capabilities based on protocol ID
 - > A protocol which is supported
 - > Optionally "transported" over another protocol
 - > Supports nesting of "transports"
- > Examples
 - > CPTP over SpaceWire-(R)T
 - > A standardised address space "transported" over RMAP

Describing RMAP Address Spaces

- > Capability services allow the description of:
 - Memory regions which exist to receive data: data sinks (e.g. actuators)
 - > Memory regions which permit access to generated data: data sources (e.g. sensors)
- > Also permits non-trivial access mechanisms
 - > Delayed response reads and writes
 - > Initiated reads and writes

Using SpaceWire-PnP (1): SOIS

> Supports services necessary for SOIS

- Space
 Technology
 Centre
 University of Dundee
- Device information, network ID and link activity together permit network and device discovery
- > Minimal implementation requirements:
 - > 12 words of read-only constant registers
 - > 1 read-only dynamic register
 - > 1 read-write register
- > Minimal set of primitives
 - > 5 pairs (request/indication)

Using SpW-PnP (2): Datasheets

- > E.g. direct interface to a PROM
- > Data source type identifies format of datasheet
 - > E.g. xTEDS
- > Minimal implementation (in addition to previous)
 - > 8 read-only words
 - > 2 primitive pairs
- > Uses the same RMAP core as for SpaceWire-PnP

Using SpW-PnP (3): RMAP Spaces

- > Can use data source/sink capability services to Space describe an existing RMAP address space
 - > E.g. JAXA standardised memory map
- > Same resource requirements as datasheet example for read-only
 - > Add 8 read-only words and 4 primitive pairs for read-write
 - > This adds a data sink

Using SpW-PnP (4): Notification

- Ability for routers (or any device) to automatically inform a network manager when status changes
 - > E.g. link connect/disconnect
- > Uses a simple data source
- > Additional requirements (from datasheet case):
 - > 1 read-write field for a target source
 - > 12 read-write fields for an initiator source
- > Features to support multiple, uncoordinated network managers are documented

Using SpW-PnP (5): SpW-(R)T, SpW-D

- Capability services could easily be added to support the configuration of mechanisms such as SpaceWire-(R)T and SpaceWire-D
 - > No changes to SpaceWire-PnP necessary
- > Standard SpaceWire-PnP device configuration easily fits within time slots
 - > Works well with SpaceWire-D
 - > Could be transported over SpaceWire-(R)T
- > Level 2 support needs documenting further

Using SpW-PnP (6): GenFAS

- > The MARC hardware, built by SEA, has simplified SpW-10X compatible address spaces on each node and router
- > SpaceWire-PnP defines 10X compatibility
- SciSys has implemented the full set of core SpaceWire-PnP primitives in the GenFAS software (executing on MARC)
 - > Was a valuable learning experience
 - > Fairly trivial (~2k LOC, heavily commented)
 - > Works well!

Known Issues/Discussion Points (1)

Possibly confusing terminology: link and port used almost interchangeably

- > Haven't got around to fixing this
- Couple of minor changes necessary for full SOIS support
 - > Haven't got around to updating document
- > Deliberate mirroring of fields to support consolidated reads
 - Might not want this

Known Issues/Discussion Points (2)

- > Time-code handling is just one possible way
- Space
 Technology
 Centre
- > Interrupts not in current document version
- Capabilities support full range of (extended) PIDs
 - > Probably unnecessary: simplifications possible?
 - > There may be a better way to identify capabilities than by protocol ID
 - > However, the concept of capabilities is useful
- > And more...

How to Use the SpW-PnP Document

> This is a discussion document

Space
Technology
Centre
University of Dundee

- > It is:
 - > A complete proposal
 - > The product of experience and research
 - > The result of inputs from many people
- It is **not**:
 - > Expected to become a standard as it is!

A Guide to the Document

- > The document is long, but don't be scared
- Space
 Technology
 Centre
 University of Dundee

- > There is a detailed introduction
- > Level 2 support is documented
 - > In a self-contained section
 - Can safely be ignored unless you are interested
- Compatibility with the 10X is documented
- > Document is repetitive in structure
 - > Each parameter, entry, field, primitive and parameter is documented in detail

Page Breakdown: Whole Document

Centre

Page Breakdown: Level 1 Services

Space
Technology
Centre
University of Dundee

Total: 65 Pages

Summarising SpaceWire-PnP

- Protocol utilising RMAP
- UoD document available: SpaceWire-PnP v2.1
- Defines
 - > Target parameters
 - > Initiator primitives (service interface)
 - > Behaviours (algorithms) where necessary
- Simple
- Does not require extra feature support
- Flexible and extensible
 - Can use capability services to extend support

Technology
Centre
University of Dundee

Questions? Discussion?

