TOPNET Second Generation

R. Vitulli

ESTEC TEC-EDP
Introduction

- Problem of two SpaceWire subsystems geographically distributed
- Remote subsystems will be connected only when development is completed
- Integration and Testing performed late in development process
 - Problems expensive to correct
The **IP Tunnel** transparently replaces a SpaceWire link

- Traffic entering the Tunnel will exit in the same order
 - A time-code will be between the same two data characters
- Link start and disconnect are also represented
- Only difference is in bandwidth and latency
 - Limitations of Internet
- Protocol Analysis software also provided
 - Monitor the Tunnelled traffic
TOPNET implementation

Internet

Router 2

Node 73

Node 72

Node 74

SpaceWire Sub-System 2

Router 3

Node 74

SpW IP Tunnel

SpaceWire Sub-System 1

SpW-Ethernet Bridge
Virtual Satellite Integration

- Remote sub-systems connected using the Internet
- Reduces geographical limitations and travel
- Problems can be identified in interface specifications and implementations
- Integration can be performed earlier in the development process
• **TopNet Pilot activities: 3 parallel contracts**
 - To verify the usefulness of TopNet concept in a real environment
 - Primes (Large integrator) and SMEs involved
 - Feedback from contractors on advantages, drawbacks and possible improvements
Background

- 4Links
 - RAL
 - RUAG (ex SAAB Space)
Background

- THALES Alenia Space
 - Cannes
 - Toulouse
 - Milan
• EADS ASTRIUM
 - Toulouse
 - Friedrichshafen
 - Stevenage
 - Galileo Avionica (Florence)
 - EADS Sodern (Paris)
Feedback

- **Advantages:**
 - Earlier integration
 - Identify and correct problems earlier
 - Saves time and money as easier to correct problems identified at an earlier stage
 - Less travel
 - Can integrate sub-systems without physically bringing them together
 - Improved cooperation
 - Allows multiple organisations (or a single organisation with multiple sites) to work on the same system
 - Improved flexibility
 - Integration testing can be performed at any time
 - Sub-systems can easily be replaced by simulations
Drawbacks:

- **Bandwidth and Latency Restrictions**
 - Software provides mechanisms to cope with poorer and varying bandwidth and latency
 - Internet latency can affect Isochronous operation and Real Time operation
 - Risk to have a bad synchronisation of equipments using time diffusion principle (time-codes, OBT)

- **Firewall Issues**
 - Software allows any TCP port to be used
 - Using an appropriate port, a firewall will see the traffic as no different to a secure web page
 - Use of a Tunnel Server avoids the client-server limitations on the end users
 - Companies may still require their own Tunnel Server if they are worried the company operating the server may view their data
Possible Improvements

- Visual Representation of Network Topology
- Edit Network Topology Visually
- Automatic updates
- Improvement for the installer
- Microsoft certified USB driver
- Windows Vista
- Management of large packets
- Improvement of the Statistics window
- Address limitation when using two links of Tunnel device
 - Links not entirely independent
 - Single shared USB “pipe”
 - One link can be blocked by the other
- Multiple language support
Virtual Devices

- **Virtual devices** represented in software
- Connected together using virtual links
- Virtual links can also connect applications and physical devices
- Applications can communicate with physical devices and virtual devices without any changes
- Graphically build virtual network connecting applications, virtual devices and physical devices
Virtual Devices

- **Virtual networks can be integrated using a SpaceWire Internet Tunnel**
- Can prototype features in a virtual device prior to implementation in a physical device
- Can make use of virtual versions of physical devices, e.g. Instruments
 - Perform testing without requiring the physical hardware
- Test out different network architectures
- Allows an higher level of Virtual Satellite Integration
Real-Time communication issues

- For the Internet tunnelling communication regular TCP/IP is used
- It is well-known that TCP/IP implements a “best-effort” paradigm without guaranteeing latency
- Reasons are: queuing delays sum up at each routers
- TCP is “best effort” and tries to fill the routers queues
Real-Time communication issues

- Possible solutions in order to have a guaranteed latency is to use a customised communication protocol:
 - TCP Westwood+ is available in Linux kernel and it is a sender-side only modification of the TCP protocol stack that optimizes the performance of TCP
 - Investigate TCP Westwood+ that is known to provide less queuing
 - Customize TCP Westwood+ considering a particular scenario
 - i.e. when the bandwidth of the tunnel is known, as it is in corporate intranet
 - Design rate-based transport protocol at application level executed over the UDP
 - as it is done for applications that are time-sensitive such as VoIP or Video Conferencing
Follow-on: GSTP5 activity

- GSTP5 activity named “TOPNET 2nd generation”
- GSTP5 is an optional programme
- The activity is in the GSTP-5 work plan, but at the moment there are not funds to implement it
- If you are interested, contact your national agency to promote this activity!