

The SpaceWire-PnP Protocol: Status and Future Directions

Peter Mendham

Space Technology Centre University of Dundee

17 September 2009

Agenda

- > The plug-and-play concept
- > A little history
- > Key concepts and terminology
- > SpaceWire-PnP services
- > One service in detail
- > Capability services: data sources and sinks
- > Summary
- > The way forward from here

Plug-and-Play

- Historically related to user experience
 The ability to interface two or more devices together without the need for configuration
- > Refers to
 - > Discovery
 - > Configuration
 - > (Adaptation)

> of

- > Devices
- > Services

"Devices" could refer to anything from ICs to units to software components to whole systems

Plug-and-Play for Space

- Apply the properties of plug-and-play to space systems
- > Central goal is interoperability
- > Key feature is discovery
- > Improve:
 - > Reuse
 - > Development cycles
 - > Market for COTS components

Plug-and-Play Scenarios

- > Accelerating development
- > Automated integration and test
- > Failure detection/fault tolerance
- > Onboard mode change verification
- > Agile spacecraft development
 - > Such as ORS

A Little History

- Recent developments (since 2006) spurred on by ORS
 AFRL, NRL, GSFC
- > Contributions from ESA, 4Links, UoD
- > New protocol proposed meeting the needs of ORS
 - > Implemented and utilised in SPA-S
- > UoD propose the use of RMAP packet format to permit reuse of existing IP (proposed late 2006 early 2007)
 - > Fitted with existing semantics
- > Other drivers for UoD proposals:
 - > Cover cases other than ORS; fix bugs; ensure wider applicability; provide mechanisms for using existing hardware and software

Plug-and-Play and Standardisation

> Spectrum of possible approaches to devices:

No standardisation

Complete standardisation

- > **Nondelvite deavince as discretiond** is at ion
 - > Reliquivese nor and rear regression tex is tanged allow in the rear is tanged allow in the rear is t
 - > Deleverence of a seril predstoy of the mail and states be etce features
 - > Atanidable idevleet doivier form
 - > Perindtoralytbecqdialigied device drivers
 - > Permassurges of devices by standar & mand ware
 - > Software must be re-qualified every time
 - > Hardware must be rewritten each time

SpaceWire-PnP: Guiding Principles

- > UoD working document: SpaceWire-PnP
- Provide a standard way to **discover** and **configure** the standard features of SpaceWire devices
 - > i.e. the features of SpaceWire devices which are identified in the SpaceWire standard
- > As interoperable as possible
- > Do not *require* any extra SpaceWire features
- > Provide hooks for service discovery and configuration
 - > But do not implement this: beyond scope
- > Consider the application to common use cases

SpaceWire-PnP and Standardisation

> Spectrum of possible approaches to devices:

Complete standardisation

- > Standardisation of standard features
 - > Requires devices to support SpaceWire-PnP protocol
 - > Documented exceptions for existing devices
 - > Standardised mechanisms for discovery
 - Standardised mechanisms for configuring standard features only
 - Provides extensibility but does not require extra features

> Partners well with electronic data sheets

RMAP Utilisation

- Semantics required for plug-and-play closely match RMAP
- > Use a well-defined implementation of RMAP
 - > 32-bit wide addressing and alignment
 - > Big endian
 - > Incrementing addressing
 - > Acknowledged, verified writes
 - > Pre-defined key
 - > RMW implementation (optional) is a conditional write
- > Use a different protocol ID
 - > To distinguish from generic RMAP traffic
 - > E.g. Mass memory device

Perspective

- > PnP views the network like the SpaceWire standard
 - > Links
 - > Nodes> Routers> Devices
- No topology restrictions
- Both nodes and routers have links >
 - Nodes have 1 or more links
 - > Routers have 2 or more links
- Every device on the network has a port zero
 - > This is the target for PnP transactions

Levels of Support

> Managed Networks

- > Important role for system designer
- Competition during discovery process removed by design
- Competition for configuration of devices removed by design
- > Simplest case
- > Open Networks

- > Network handles all competition issues
- > Deals with networks where design is **not** known *a priori*
- > More flexible but more complicated

Services

- A set of parameters on the target
 This is a standardised RMAP address space
- > A service interface at the initiator
- > A description of how the initiator and target will both behave

Target Parameters

- > Follow a regular form
- > Parameters are made up of *fields*
 - > Each field is 32-bit
- > Optionally, a parameter may have multiple *entries*
 - > This is to permit tables, such as routing tables
 - > The *root entry* has one set of fields
 - > Every other *non-root entry* has a different but identical set of fields
- > For example, the port configuration parameter
 - > Has a root entry with one field giving the number of ports
 - > Has a non-root entry for each port, each of which has the same fields

Core Services

- > Four core services defined
 - > Device Identification
 - > Network Management
 - > Link Configuration
 - > Router Configuration (routers only)
- > Optionally, there is also a time-code source

Device Identification and Status

- > Identifies the device
 - > Vendor ID and Product ID (like PCI, USB etc.)
 - > Type (node/router)
 - > Number of ports
 - > Optional static device ID
 - > Optional vendor and product strings
- > Provides current status
 - > Active ports
 - > Device ID (non-static)
 - > Return port

Example Parameter Fields

Table 5-3: Device Information Parameter Fields		
ID	Name	Summary
0	Vendor ID/ Product ID	Contains 16-bit vendor and product IDs
1	Region/Number of Ports	Indicates preferred device region gives port count
2	Static Device ID High	High 32 bits of the 64-bit static device ID (if present)
3	Static Device ID Low	Low 32 bits of the 64-bit static device ID (if present)
4	Version/Instance ID	Version and System instance of this device type
5	Operation/String Lengths	Length of the vendor a product strings (can be zero)
6-31	Reserved	Reserved for future use

Example Initiator Primitive

- > DIDS_READ_INFO.request
 - > RMAP_Parameters
- > DIDS_READ_INFO.indication
 - > Result
 - > Vendor_ID
 - > Product_ID
 - > Preferred_Region
 - > Router_Node
 - > Support_Level
 - > Port_Count
 - > Device_ID
 - > Version
 - > Instance_ID

Capabilities

- > Device can provide a list of *capabilities*
- Capabilities based on protocol ID
 - > A protocol which is supported
 - > Optionally transported over another protocol
 - > Supports nesting of transports
- > Each capability can define a service
 - > Just like the core services
 - > Defines target parameters, initiator primitives etc.
 - > Flexible and extensible
- > An example protocol would be RMAP
 - > Predefined capability services to permit use of RMAP
 - > Data source service and data sink service

Data Source and Sink Capability Services

- Permit description of existing RMAP address spaces
- > Utilise previously documented RMAP mechanisms
 - > Such as delayed response read
- > Also provides an interface to an initiator
 - > Permits configuration of an initiator
- > Each source/sink defines its data type
 - > A few standard ones, most left open
- > Provides a great deal of flexibility

Uses for the Data Source

- > Electronic data sheets
 - > Standard type for (e.g. xTEDS) data sheets
 - > Describes where to read for the data sheet
 - > Responds immediately
- > Router status change notification
 - > Standard type for router status
 - > Either delayed response read
 - > Or initiated write
 - > Both completely configurable

Summarising SpaceWire-PnP

- Protocol utilising packet format and semantics of RMAP
- > Defines
 - > Target parameters
 - > Initiator primitives (service interface)
 - > Behaviours (algorithms) where necessary
- > Simple
 - > Does not require extra feature support
- > Flexible and extensible
 - > Can use capability services to extend support

The Way Forward

> This is one possible approach

- > Has involved complete documentation, research and simulation of key principles
- > Various decisions were made
 - > Including trade-offs
- > Each decision should be considered in turn by a group of people
 - > This can be used to guide future developments

Some Decisions

- > Is plug-and-play a useful concept for SpaceWire?
 - > I assume "yes"
- > Core objectives of plug-and-play for SpaceWire?
 - > Network discovery
 - > Device configuration?
 - > Interoperability? (how much?)
- > How much should be standardised?
 - > Nothing?
 - > More than I have suggested?
 - > Less?

Technical Specifics

- > Should we use RMAP?
 - > To what extent?
 - > What about the use of protocol IDs?
- > Is it OK for a leading zero to indicate discovery/configuration information?
 - > I.e. every device has a port zero
- > Vendor IDs etc.
 - > How standardised?
 - > Controlled by SpaceWire WG?

Questions? Discussion?

