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Galvanic Isolation of SpaceWire Links

Introduction

• The SpaceWire link Signal Level is based on LVDS as specified 
in ANSI/TIA/EIA-644

• LVDS provides in nominal operation a high impedance data 
connection between units

• There is currently no option for galvanic isolation specified in the 
SpaceWire standard

• This presentation will:
– Review the need for galvanic isolation of data interfaces on 

board of spacecraft
– Analyse the common potential shift tolerance of commonly 

used LVDS devices
– Present and assess proposals to realise galvanic isolation 

for SpaceWire
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Need for Galvanic Isolation
• For some application galvanic isolation is desired to cope with the 

following effects:
– Differences in the ground reference levels between units and 

interface circuits
– Failure propagation due to over-voltage emission caused by 

power supply failures
– Internal and external voltage building-up of spacecraft units 

when immerged in plasma
– Electrostatic discharge resulting from spacecraft charging
– Electrical transients induced by lightning in electrical circuits 

due to coupling of electromagnetic fields (e.g. for launcher 
applications)

– Isolation of ground support equipment
– Simplify the life of the system designer
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Galvanic Isolation of SpaceWire Links

Possibility of Failure Propagation in Cross-strapped 
Systems due to Over-voltage Failures 

Diagram by Sven Landström, TEC-EPC, ESA
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Common EMI Mitigation Techniques
• Adherence to the EMC space design rules should mitigate most of 

the described problems
– Design of a controlled grounding scheme throughout the 

spacecraft
– Control of local ground level after the power converter on PCBs 

and in units
– Use of power converters with over voltage protection
– Controlled discharge of spacecraft surfaces
– Design of basic space vehicle structure as “Faraday cage”
– Enclosure of electronic boxes
– Shielding of cables
– Over-shielding of cable bundles
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Commercial Common Potential Difference Tolerance

• Commercial LVDS are often quoted to be tolerant against “common 
mode voltage” drift of +/- 1V

• This is only correct for the best case situation
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Galvanic Isolation of SpaceWire Links

Worse Case Common Potential Difference Tolerance

• Analysis based on worse case offset voltage specified in the LVDS 
driver data sheet

• Common mode voltage difference tolerance is reduced between 
+0.75V and -0.925V 
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Fail Save Common Potential Difference Tolerance

• The fail save common potential difference tolerance has to consider the 
max/min failure voltage and the Absolute Maximum Ratings of the receiver

• For commonly used receiver circuits this is only +/- 0.3V beyond the maximum 
supply voltage
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LVDS Receiver with extended common-mode input voltage range

• The LVDS receiver SN55LVDS33-SP from Texas Instruments 
offers an extended common-mode input voltage range:

– -4V to +5V Common-mode input voltage range
– -5V to +6V Absolute Maximum Rating of input signal
– 400-Mbps maximum signalling rate 
– 3.3V Supply voltage
– Complies with TIA/EIA-644 (LVDS)
– Receiver input ESD protection exceeds 15 kV Human-body 

Model and ±600 V Machine Model (MM) for electrostatic 
discharges with respect to ground

– Inputs remain high-impedance on power down
– Pin-compatible with other commonly used LVDS receivers 

like: AM26LS32, SN65LVDS32B, μA9637, 
SN65LVDS9637B

– QML-V qualified, SMD 5962-07248
– Military Temperature Range (–55°C to 125°C)

• LVDS receivers with extended common-mode input voltage 
range have the potential to solve the ground shift and fail safe
problematic

• Possibly other manufactures will follow the example of TI and 
offer similar devices
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Methods used for Galvanic Isolation

• Signal lines are often isolated through:
– Transformer coupling
– Capacitive coupling
– Opto-couplers

• Transformer coupling is commonly used in 
space in Mil-bus

• Capacitive can support signal bandwidth is 
several GHz

• Opto-coupler performance can degrade over 
time and are often sensitive to radiation

• The applicability of a method depends not only 
on the signal bandwidth but also on the signal 
coding used 

Transformer Coupling

Capacitive Coupling

Opto-coupler
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Transformer Coupling for SpaceWire Links

• The following circuit has been proposed galvanic isolation of 
SpaceWire links

• It still needs to be verified with real SpaceWire signals

References:
“Elimination of Common Mode Voltage Requirements for LVDS used in SpaceWire”, Larsen J., Proc. SpaceWire 

Conference, Nara, Japan, November 2008 
“A Step-by-Step Procedure to Integrate Transformer Coupled LVDS into SpaceWire Applications”, Larsen J., 

Components For Military and Space Electronics Conference & Exhibition, February 2009
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SpaceWire Signals

• Data Strobe encoding:
– Data are transmitted directly
– Strobe signal changes whenever the Data signal is constant

• Receiver recovers the clock by XORing the Data and Strobe 
signals

0 0 1 1 0 1 1 00 1Data

D
S

CLK

• The D and S signals are not DC balanced
• The number of transitions and the signal spectrum strongly 

depends on the transmitted data.
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Worse Case Signal

• The Data Character 55Hex toggles every bit

• C=0 marks a Data character and C=1 marks a Control character
• P is the parity bit which is set to produce an odd parity covers the 

previous character plus the following control bit 

• A sequence of 55Hex Data characters will toggle the D-line in every 
bit but will leave the S-line constant

• Spice simulation was performed at 10Mbps with the sequence:
1st NULL + FCT + 10 Data characters + FCT + 7 Data Characters + EOP

P C b0 b1 b2 b3 b4 b5 b6 b7
1 0 1 0 1 0 1 0 1 0
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Galvanic Isolation of SpaceWire Links

Spice Simulation Differential Voltage Data Line
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Spice Simulation Differential Voltage Strobe Line

Differential input threshold of LVDS receivers is +/- 100mV
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Conclusion of the Spice Simulation

• The Spice simulation demonstrates the principle limitation of the 
proposed isolation of SpaceWire with transformers

• The S-line can remain constant for certain legal sequences of 
data characters 

• Due to the elimination of the DC component in the signal the 
level of the S-line drops below the differential input threshold of 
the receiver

• Noise will cause an unpredictable behaviour at the output of the
LVDS receiver

• The isolation of SpaceWire with transformers it therefore not 
recommended

• Are there another solutions for the galvanic isolation of 
SpaceWire?
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Capacitive Isolation using Bus-Holder Circuits

• The Bus-Holder circuit has been 
proposed by TI for the galvanic 
isolation of IEEE 1394-1995 serial 
bus

• A Bus-Holder is a weak latch circuit 
which holds last value on a tri-state 
bus

• This prevents the CMOS gate input 
from floating and keeps a valid logic 
input level without using pull-up or 
pull-down resistors

• The capacitors are used as 
galvanic isolation barrier

• Capacitor rating determines the 
maximum isolation performance

• This active isolation circuit requires 
an isolated power supply for the 
LVDS transceiver and two of the 
Bus-Holders

Node
Power
Supply

Bus
Holder

DC/DC
Converter

SpaceWire
Codec

1MΩ

1MΩ

0.1uF
10nF

10nF

10nF

+3.3V +3.3V

D In+
D In-

S Out+
S Out-
GND

10 nF0.1uF

Isolation Boundary

CABLE

Chassis
Ground

Power
In

10nF D Out+
D Out-

10nF S In+
S In-

LVDS
Receiver

LVDS
Driver

LVDS
Driver

LVDS
Receiver

Bus
Holder

Data In

Data Out

D In

S In

D Out

S Out

Y

Bus Holder
Circuit

Reference: 
“Galvanic Isolation of the IEEE 1394-1995 Serial Bus”, 
Henehan B. et.al., TI Application Note SLLA0011, 
October 1997 
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High Speed Digital Isolators

• There exist a number of 
integrated high speed digital 
isolator components from 
different vendors

• The use integrated transformers 
or capacitors as isolation barrier

• They cover a frequency range 
from DC to 150 Mbps

• Multi-channel devices in all 
possible channel directionality 
configurations provide compact 
solutions

• Additional jitter and skew has to 
be accounted when assessing 
the maximum link speed 

ADuM130x/ADuM140x Family from ANALOG Device

ISO72xx Family from Texas Instruments
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Digital Isolator Operation Principle

• The single-ended input signal is split into 
the differential signal components A and !A

• Each signal component is then 
differentiated into the transients B and !B

• Positive differential input to the comparator 
are used to set (C) or to reset (!C) the 
NOR-gate flip-flop

• Common mode changes at the primary 
side are efficiently filtered by the differential 
comparator

• The flip-flop is used to hold the output state 
value when input is unchanged

• A second low frequency channel is used to 
cover the frequencies 100kbps and to 
determine the correct state after power on
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Galvanic Isolation of SpaceWire Links

Digital Isolator Performance

• Data rates up to 150Mbps
• Protection for very large potential 

differences:
– Transient over voltage isolation 

4000 V for 60 sec
– Maximum working isolation 

voltage 560 V
• CMTI Common-mode transient 

immunity >25kV/µs
• Barrier capacitance input-to-output 

1pF
• Isolation resistance >1011 Ω
• Low channel to channel skew <1ns
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Conclusions

• Currently the SpaceWire standard does not specify any option 
for galvanic link isolation

• The earlier proposed galvanic isolation based on Pulse 
Transformers will fail if used with real SpaceWire traffic as signal

• Galvanic isolation can still be achieved through the use of Bus-
Holder circuits or digital isolators

• Both solutions require a galvanic isolated power supply for the 
isolated LVDS transceiver

• Due to the overall complexity their use is likely to be limited to 
use cases with a strong need for galvanic isolation

• LVDS receivers with extended common-mode input voltage 
range should be considered as alternative for use cases with a 
smaller common mode shifts

• The revised SpaceWire standard should specify requirements 
for an optional galvanic isolation of SpaceWire links
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