
SpaceWire-RT case
study

Thomas Ferrandiz

1

Introduction
• Goal: use SpaceWire for both command/

control and payload traffic

• Problem: Will critical messages be
delivered on-time ?

• Individuals delays are very hard to
determine because of Wormhole Routing
and recursive blocking

➡ compute a deterministic upper-bound on
the worst-case delay of every flow

2

Case Study (1)

3

Case Study (2)

• Each Ai sends 4 KB packets periodically to
one of the MM module

• The SMU sends 100 B packets periodically
to one of the MM module

• Each SpaceWire interface works
independently of its redundant interface

• A1 and A2 do not emit all the time (A1
emits 44 % of a 16 s cycle)

4

Basic SpaceWire

• Delay for a SMU packet:

• caused by the router

• SMU packets gets blocked behind Ai packets

• Worst-case: 4 4-KB packets may go through
before the SMU packet

• If we use priority on logical adresses:

• Worst-case: 1 4-KB packets may go through
before the SMU packet

5

SpaceWire-RT: Best Effort

• Virtual channels: 5 sources, 2 destinations, 2
routes to each destination ⇒ 20 channels

• VC + segmentation in 256 B chunks
⇒ delay divided by 16

• Channel priorities are not interesting here

• Flow control: does not slow transmissions
if reception buffers are big enough

6

SpaceWire-RT: Assured

• Acknowledgments may be useful to detect
the failure of a route

• Retries not useful here

• On each source: redundant interfaces are
independent ⇒ no automatic switching

• ACK used to warn the apps that a route is
down so that they can switch

➡Delays in the same order as for BE
7

SpaceWire-RT: Reserved

• 36 slots necessary to transmit all the traffic

• we can give the SMU almost 1/2 the slots

• worst-case delay = 3 * length of a slot

• flow control: no slowdown because a phase
is reserved in each slot

• Apps have no way to determine if a route
is valid or not (maybe Flow Control ?)

8

Summing up
SpaceWire
standard

Best
Effort

Assured Reserved Guaranteed

Worst-case
delay for
SMU packets

Switching
between
redundant
routes

9

• Assured/Guaranteed useful only because of the ACK
• Synchronous mode gives worse results than
asynchronous mode on a simple network

Conclusion

• Assured/Guaranteed classes do not reduce
worst-case delays

• Automatic redundancy best done at the
application level

• ACK are useful to warn an application that
a route is down

➡Suggestion: merge Assured/Guaranteed
with BE/Reserved by adding ACK as as
optional feature

10

