

SpaceWire-PnP: Progress Update

Peter Mendham, Albert Ferrer Florit, Steve Parkes University of Dundee

SpaceWire-PnP in Detail

- Significant progress in shaping a protocol
- Analysis and prototyping work has been done
- Structure of services presented in Nara
- Concentrate on depth rather than breadth...
- Focus on two services:
 - Device Ownership
 - Owner Proxy
- All other services build on these

Device Ownership

- Every device has an owner
- Owner is responsible for device configuration
- Only owner may configure device
 - By convention
- Ownership of device must be contiguous

Contiguous Ownership

"Owner" owns all devices in blue

If "Owner" wishes to own green node it must first own green router

Ownership Issues

- How to identify owner of device to those discovering the network?
 - Owner Location
 - Also necessary to determine if owner is still valid
- How to ensure that device is uniquely identified to owner?
 - Device Disambiguation

Owner Location

How to identify owner of device to those discovering the network?

- Owner can be located by logical address or by path address
- Ownership is contiguous, so logical addressing is OK

Router is configured before node is claimed

Device Disambiguation

How to ensure that device is uniquely identified to owner?

- Owner gives device an identifier
- On a closed network (devices known a priori) ID can be assigned deterministically
- On an open network this is not the case

Atomicity

- Only works if:
 - Owner location
 - Device disambiguation identifier
 - are written atomically
- Use a conditional write implementation of RMAP Read-Modify-Write
- Limited to 32-bits
 - Logical/path address selection (1 bit)
 - Logical address + return port number (13 bits)
 - Path address, 3 'hops' (15 bits)
 - Device disambiguation identifier (16 bits)
- When this is written on a router, routing table is configured automatically

Centre University of Dundee

Device Owner Field

Logical Addressing:

31	24	23	22 18	17 16	15		8	7	0
Disambiguatior	n ID High	0	Return Port No.	Rsvd	Owner	Logical Address		Disambiguation ID Low	
Path Addre	essing:								
Path Addre	Ŭ	23	22 18	17	13	12	8	7	0

- If the path between a device is more than three 'hops'
 - Follow three hops to find another router
 - Check router to find the next hops
 - Continue as long as is necessary

"Disambiguation ID" is split up for good reason

- Come back to that later (this is a simplification)

"Disambiguation ID"

- Randomly assigned
- 16-bits
- On a network of 32 devices chance of clash is 0.75%
- Based on the "Birthday Paradox"
 - In a room of 23 people there is a 50% chance that two people will share a birthday
 - For example, with a 1-byte ID, chance of clash on a network of 32 devices is > 85%

University of Dundee

Competition Resolution

- There may be competition for device ownership
- Resolved using priorities pre-assigned to potential owners
- If priorities are equal or not assigned the port number being used to access the device is used
- Lowest port number wins

University of Dundee

Configuring Un-Owned Devices

If you don't own a device, how do you configure it?

E.g. routing table entries in a router

Must request the owner to make the change

- How should a request to the owner be formatted?
- Exactly the same as if the request was for the device, but specifying the "disambiguation ID"

Owner Proxy

SpaceWire-PnP operates on fields

Field identifier forms an RMAP address

- On owners this is combined with Proxy ID
 This is the "Disambiguation ID"
 - If Proxy ID is zero operation is on the owner
- If Proxy ID is non zero operation is a request to alter the device with that Proxy ID
- Owner has the chance to vet the operation and then carry it out on the device if permitted

Owner Proxies

- Each owner can proxy 255 devices
- Proxy ID = lowest byte of "Disambiguation ID"
- Proxy Key is used purely for disambiguation
- Makes up the 16-bit "Disambiguation ID"

To clarify:

- "Disambiguation ID" split into two 8-bit fields
- Lowest 8-bit specifies Proxy
- Highest 8-bits is purely for disambiguation (called Proxy Key)
- Combined with field indexing form 40-bit address

Centre University of Dundee

Device Owner Field

Logical Addressing:

31	24 .	23	22 18	17 16	15	3	37	,	0
Proxy	y ID	0	Return Port No.	Rsvd	Owner	Logical Address		Proxy Key	
		·							
Path Addr	'essina:								
		~~		. –					0
Path Addr	essing: 24 .	23	22 18	17	13	12 8	37		0

- These are the actual device owner fields
- Proxy ID/Key fields allow device to be configured
 - Via owner proxy
 - Using owner location
- Also used for disambiguation

Summary

- Significant effort has gone into SpaceWire-PnP
- Goals have been presented multiple times
 - Interoperability
 - Compatibility (e.g. with SpaceWire Standard, RMAP, SpaceWire-RT, SpW-10X)
 - Flexibility
 - Extensibility
 - Simplicity
- Presented details of two services here:
 - Device Ownership
 - Owner Proxy
- These are key to other services
 - For example, the Network Discovery service

Space Technology Centre University of Dundee

Backup Slides

University of Dundee

Principles

- Interoperability
 - Promote hardware and software reuse
 - Create more potential for off-the-shelf components
 - Permit network discovery and verification
- Services for SpaceWire networks
 - Discovery
 - Identification
 - Configuration
- Provide support for features defined in the SpaceWire standard
- If it is optional in the SpaceWire standard it should be optional in plug-and-play

University of Dundee

Perspective

- PnP views the network like the SpaceWire standard
 - Links
 - Nodes
 - ers Devices
 - Routers _
- Both nodes and routers have links
 - Nodes have 1 or more links
 - Routers have 2 or more links
- Every device on the network has a port zero
 - This is the target for PnP transactions
- In a running system, every device can have one owner node which is responsible for that device

SpaceWire-PnP Services

- Device Identification
- Device Ownership
- Owner Proxy
- Network Discovery
- Link configuration
- Router configuration
- Time-code source
- Generic data sources
- Generic data sinks
- SpaceWire-RT

Space Technology Centre University of Dundee

Owner Proxy Service

- Device owners offer access to the devices they own via proxy address spaces
- An owner may provide up to 255 proxies
- A device identifies its owner and the proxy space ID
- All access to that device go via the proxy space on the owner
- A proxy address space is a standard PnP address space
- Allows full control of all requests in a standardised manner with owner intervention

Owner Proxy Example

Accewnerene soor and the source of the second secon

