SpaceWire-PnP:
Progress Update

Peter Mendham, Albert Ferrer Florit,
Steve Parkes
University of Dundee
SpaceWire-PnP in Detail

- Significant progress in shaping a protocol
- Analysis and prototyping work has been done
- Structure of services presented in Nara
- Concentrate on depth rather than breadth…
- Focus on two services:
 - Device Ownership
 - Owner Proxy
- All other services build on these
Device Ownership

- Every device has an owner
- Owner is responsible for device configuration
- *Only* owner may configure device
 - By convention
- Ownership of device must be contiguous
Contiguous Ownership

- "Owner" owns all devices in blue
- If "Owner" wishes to own green node it must first own green router
Ownership Issues

- How to identify owner of device to those discovering the network?
 - Owner Location
 - Also necessary to determine if owner is still valid
- How to ensure that device is uniquely identified to owner?
 - Device Disambiguation
Owner Location

How to identify owner of device to those discovering the network?

- Owner can be located by logical address or by path address
- Ownership is contiguous, so logical addressing is OK
 - Router is configured before node is claimed
Device Disambiguation

How to ensure that device is uniquely identified to owner?

- Owner gives device an identifier
- On a closed network (devices known *a priori*) ID can be assigned deterministically
- On an open network this is not the case

Assign identifier *randomly*
Atomicity

- Only works if:
 - Owner location
 - Device disambiguation identifier

 are written atomically

- Use a conditional write implementation of RMAP Read-Modify-Write

- Limited to 32-bits
 - Logical/path address selection (1 bit)
 - Logical address + return port number (13 bits)
 - Path address, 3 ‘hops’ (15 bits)
 - Device disambiguation identifier (16 bits)

- When this is written on a router, routing table is configured automatically
Device Owner Field

Logical Addressing:

<table>
<thead>
<tr>
<th>31</th>
<th>24</th>
<th>23</th>
<th>22</th>
<th>18</th>
<th>17</th>
<th>16</th>
<th>15</th>
<th>8</th>
<th>7</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disambiguation ID High</td>
<td>0</td>
<td>Return Port No.</td>
<td>Rsvd</td>
<td>Owner Logical Address</td>
<td>Disambiguation ID Low</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Path Addressing:

<table>
<thead>
<tr>
<th>31</th>
<th>24</th>
<th>23</th>
<th>22</th>
<th>18</th>
<th>17</th>
<th>13</th>
<th>12</th>
<th>8</th>
<th>7</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disambiguation ID High</td>
<td>1</td>
<td>Path Addr. 1</td>
<td>Path Addr. 2</td>
<td>Path Addr. 3</td>
<td>Disambiguation ID Low</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- If the path between a device is more than three ‘hops’
 - Follow three hops to find another router
 - Check router to find the next hops
 - Continue as long as is necessary

- “Disambiguation ID” is split up for good reason
 - Come back to that later (this is a simplification)
“Disambiguation ID”

- Randomly assigned
- 16-bits
- On a network of 32 devices chance of clash is 0.75%

Based on the “Birthday Paradox”

- In a room of 23 people there is a 50% chance that two people will share a birthday
- For example, with a 1-byte ID, chance of clash on a network of 32 devices is > 85%
Competition Resolution

- There may be competition for device ownership
- Resolved using priorities pre-assigned to potential owners
- If priorities are equal or not assigned the port number being used to access the device is used
- Lowest port number wins

Diagram:
- Owner
- Router
- Node
Configuring Un-Owned Devices

- If you don’t own a device, how do you configure it?
 - E.g. routing table entries in a router
- Must request the owner to make the change
- How should a request to the owner be formatted?
- Exactly the same as if the request was for the device, but specifying the “disambiguation ID”
Owner Proxy

- **SpaceWire-PnP operates on fields**
 - Field identifier forms an RMAP address

- On owners this is combined with Proxy ID
 - This is the “Disambiguation ID”

- If Proxy ID is zero operation is on the owner
- If Proxy ID is non zero operation is a request to alter the device with that Proxy ID

- Owner has the chance to vet the operation and then carry it out on the device if permitted
Owner Proxies

- Each owner can proxy 255 devices
- Proxy ID = lowest byte of “Disambiguation ID”
- Proxy Key is used purely for disambiguation
- Makes up the 16-bit “Disambiguation ID”

To clarify:
- “Disambiguation ID” split into two 8-bit fields
- Lowest 8-bit specifies Proxy
- Highest 8-bits is purely for disambiguation (called Proxy Key)
- Combined with field indexing – form 40-bit address
These are the actual device owner fields

Proxy ID/Key fields allow device to be configured
 – Via owner proxy
 – Using owner location

Also used for disambiguation
Summary

- Significant effort has gone into SpaceWire-PnP
- Goals have been presented multiple times
 - Interoperability
 - Compatibility (e.g. with SpaceWire Standard, RMAP, SpaceWire-RT, SpW-10X)
 - Flexibility
 - Extensibility
 - Simplicity
- Presented details of two services here:
 - Device Ownership
 - Owner Proxy
- These are key to other services
 - For example, the Network Discovery service
Backup Slides
Principles

- **Interoperability**
 - Promote hardware and software reuse
 - Create more potential for off-the-shelf components
 - Permit network discovery and verification

- **Services for SpaceWire networks**
 - Discovery
 - Identification
 - Configuration

- Provide support for features defined in the SpaceWire standard

- If it is optional in the SpaceWire standard it should be optional in plug-and-play
Perspective

- PnP views the network like the SpaceWire standard
 - Links
 - Nodes
 - Routers

- Both nodes and routers have links
 - Nodes have 1 or more links
 - Routers have 2 or more links

- Every device on the network has a port zero
 - This is the target for PnP transactions

- In a running system, every device can have one owner node which is responsible for that device
SpaceWire-PnP Services

- Device Identification
- Device Ownership
- Owner Proxy
- Network Discovery
- Link configuration
- Router configuration
- Time-code source
- Generic data sources
- Generic data sinks
- SpaceWire-RT
Owner Proxy Service

- Device owners offer access to the devices they own via *proxy address spaces*
- An owner may provide up to 255 proxies
- A device identifies its owner and the proxy space ID
- All access to that device go via the proxy space on the owner
- A proxy address space is a standard PnP address space
- Allows full control of all requests in a standardised manner with owner intervention
Owner Proxy Example

Owner of Router has LA = 60
Proxy ID = 10
Access routing table of "router" at LA = 60
with proxy ID = 10
Node decides to permit access
Accesses real router
Router responds
Owner responds to original request