

SpaceWire Backplanes

Presented at:12th SpaceWire Working GroupDate:18th June 2008Author:Alan SeniorEmail:alan.senior@sea.co.uk

1

Why a backplane?

- A typical electronics unit or electronics system is comprised of a number of functional modules. Usually these modules need to communicate and they need power.
- It is undesirable to use a set of point to point looms within an electronics unit. Instead the data and control paths can be conveniently routed via a backplane PCB and the modules plug into this PCB.
- Permits modules to be inserted and removed facilitating testing and customisation of the module suite.
- Permits a common backplane interface (like VME, cPCI etc.)

Why an active backplane?

- Decouples SpW network and power distribution architecture from the Module design, so modules do not need to be powered in certain combinations to provide the connectivity required
- Improved FDIR hierarchy: The network reliability is decoupled from the module reliability. This permits network failures to be handled in a consistent manner.
- Permits a modular and scalable architecture to suit module count and bandwidth requirements

Proposed modular SpaceWire network building block (4:2 Cluster)

Cluster to Cluster connections

Example Cluster SpaceWire network for 12 Modules

www.sea.co.uk

Advantages of this architecture

- Single point failure proof
- Expandable in X and Y directions
- Same number of routers in path after a single router failure
- No failure propagation that stops Modules in other clusters communicating on any port
- Good inter-cluster bandwidth (increase at cost of Module:Router ratio)
- Spare ports for expansion, EGSE or to create a Cluster ring
- Opportunity to use Group Adaptive routing to automatically bypass bad links and routers

Power distribution

- In a modular SpaceWire backplane based we need to have some power control over each Module; this permits failed or unneeded Modules to be powered off
- The power architecture has to be similar to the Network architecture and take into account the potential need to switch off Routers
- The electronics on each Module will have different power and voltage needs so a generic architecture needs to take this into account
- The current thoughts are that a regulated voltage (12-24V) will be supplied to each Module and that Point Of Load (POL) converters will be employed on each Module to provide the voltage rails they need
- It is anticipated that a Module would need less than 20 watts
- The POL approach is a typical of commercial hardware due to the range of logic supply rails needed and the availability of high efficiency compact power modules
- The Module power switches need to be under centralised control
- If no master processor appears to be in control then hardware must power up a backup processor

The MARC project

- This SpaceWire backplane presentation is based on work performed on the MARC (Modular Architecture for Robust Computation) project
- SEA is a member of the MARC team involving SciSys and Astrium UK.
- SEA is responsible for the hardware architecture and detailed design
- The objective of the MARC project is to design and develop a demonstration system with a HW distributed architecture based on a SpaceWire network as the communication medium
- The MARC project is currently in the detailed design phase

MARC demonstrator architecture

MARC demonstrator power distribution architecture

www.sea.co.uk

10

a Cohort plc company

Commercial grade backplane connectors

- Ideally we need a controlled impedance connector to avoid SpaceWire signal degradation
- COTS connectors: Tyco AMP HmZd offer solutions
 up to 10GHz

Hypertac proposed twinax based flight solution

Hypertac based on HPH connectorTwinax based contacts for SpW

•Do we really need controlled impedance contacts, would a standard HPH connector suffice?

Aims for a SpW Backplane specification

 To create a open specification that defines the backplane electrical and mechanical* interfaces required that will support the data handling and power distribution needs of the functional modules necessary to support future spacecraft missions.

To do this we need to:

Document and agree the specification with all interested parties.

*Mechanical interfaces at level of electrical support, not unit box design

Why a SpW backplane specification?

- A SpW backplane open specification will:
 - Allow development of a set of compatible modules that permit reuse across many missions
 - Enable modules from different suppliers to be compatible
 - Assist with the development of plug and play modules
 - Simplify integration and test activities
 - Encourage a common approach to software handling of the system configuration
 - Permit hot swap systems
 - Ensure FDIR at SpW and power interface levels to be handled in a consistent manner
 - Prevent proliferation of incompatible approaches
 - Prevent unnecessary parallel development efforts

But, we must de-risk the adoption of the specification by validation!

Your role is to.....

- Tell me if you think it is a good idea!
- Provide critical and constructive comments on proposed scheme
- Tell me what you need, for example:
 - Module power requirements
 - Bus bandwidths needed
 - Number of SpW links needed
 - Is there a need for a "public" network and a "private network"
 - What is needed to support plug and play?
 - Are special provisions needed for hot swapping?
- Tell me via email, my address is on the front page!

Any Questions?