SpaceWire-RT Initial Protocol Definition

Preliminary comments on version 2.1

Christophe Honvault / Olivier Notebaert Astrium Satellite Central Engineering

EADS

All the space you need

General facts

Transfer types

- Asynchronous
 - Asynchronous communications but priority of packets are managed.
 - Three QoS: *Basic*, Best effort, Assured
- Scheduled
 - All the traffic within the system must respect time slots
 - Time slots are defined in a schedule table
 - Five QoS: *Basic*, Best effort, Assured, Resource-reserved, Guaranteed

Services

- SOIS oriented services
 - For packet, memory access, device discovery
- SpaceWire packet transfer
- RMAP
- PnP (soon)

SpaceWire-RT scheduled type

Scheduled type

- Transfer managed by a schedule table
 - All the devices must have this table available and respect it
- Some points are not addressed in the document:
 - How are initialized the schedule tables within the system:
 - Static definition at the level of each device?
 - Dynamic definition through configuration (as routers routing tables are initialized)?
 - Are they **reconfigurable** to handle persistent failures?
 - How is handled time synchronization?
 - By SpaceWire-RT, SpaceWire or CTM for instance?
 - Table construction is a "relatively straightforward exercise" (§3.8.1.4) but "has to take account of the timeliness requirements of possible retries" (§3.9.3.2.2).

SpaceWire-RT scheduled type

Who is the killer?

P78: « The "killing" of packets still being sent when the time-code arrives is done to prevent fault propagation. ». Who is the killer?

- SpaceWire-RT himself
 - Has to manage received time-codes and control the current status of the SpaceWire codec.
- SpaceWire
 - Require a modification of the current implementation of SpaceWire codecs.
- A dedicated « guardian »
 - Could be able to manage other errors, e.g. to ensure a fail-silent behaviour of devices.

SpaceWire-RT scheduled type

he space you need

What is the fault model?

Managed errors are limited to the content of the packets:

- Error in header
- Error in address (that is not protected by CRC, which may lead to use unauthorized path!)
- Error in data
- Error in the sequence
- Duplication error
- Error in end of packet (EEP)

No error linked to time is taken into account:

- Communication during unauthorized slot
- Non « fail silent » error modes of a node
- Time-code reliability

SpaceWire routers could help

- The proposed protocol attempts to ensure the network reliability without taking into account SpaceWire routers.
- Many fault detection and propagation avoidance functions could be implemented by the routers
 - Communication time-out (watch dog) as implemented in SpW-10X router is not sufficient.
 - Verification of the traffic with respect to schedule tables:
 - Blocking the communication from an unauthorized source.
 - Detection of error in addressing.
 - Such concepts are implemented on other RT protocols such as AFDX and FlexRay

Asynchronous type

- Scheduled system needs strong fault containment.
- Proposed asynchronous type does not support timeliness.
- Other timely asynchronous system exists relying on consensus and coordination of the nodes. It makes possible to optimize the bandwidth use.
- Experimented in the frame of the A3M study:
 - time codes used as "I'm alive" messages ensuring failure detection with silent-failed users,
 - two services developed: task synchronization and datapool update in a distributed system

SpaceWire-RT general

Implementation complexity

- All the devices must respect the communication model:
 - Manage one or both types
 - Manage up to 256 channels potentially associated to several buffers
 - Manage retries and flow control
 - .

e space you need

Implementation in full HW will be complex and will require large amount of resources (memory and logic) making devices more expensive and difficult to validate.

Evaluation of overheads

 Splitting all the traffic into small messages leads to increase the overheads and limit the bandwidth.
This may be not acceptable for high-data rate instruments.

- Even if all the time slots are reserved for a channel, the maximum data throughput on the corresponding path will not reach the maximum capacity of the path.
- Possibility to use reserve paths that are not managed by SpaceWire-RT?
 - In Figure 3-13, channel 41/70/1 could use reserved path A,E/F that will be no more managed by SpaceWire-RT.

ie space you need

Recommendations

SpaceWire-RT should be improved with focus on:

- Determinism: have more consideration for the time aspects
- Fault model: cover the entire range of errors and identify hypothesis.
- Simplicity: do not try to implement all SOIS required QoS at the level of SpaceWire-RT
- Define different classes of applications illustrated by Use Cases (preferably coming from future users)
 - Organisation by size (small to complex systems), by criticality,
- From these Use Cases, identify main drivers and necessary features

ie space you need

Conclusion – SpW RT protocol

- The currently proposed RT-Protocol definition looks to us (engineering feeling as potential users):
 - Taking some of our needs into account but maybe not all
 - To propose features that may probably never be used
 - Highly complex, maybe fragile with probably weak points
 - Difficult to manage at system level
 - Difficult to validate with all its features
 - Difficult to implement in building block

space you need

Conclusion - Approach

The current approach seems:

- Not focused on application needs:
 - Reference application and system user requirements for the SpW-RT-Protocol are not clearly established and agreed
- Constrained by existing protocols, devices, standards,...
 - Lots of constraints are taken into account from the space heritage
 - But existing concepts from non-space domain are not considered
- Not being enough considering implementation aspects (design, validation, operations...)
- Not taking into account sufficient elements to ensure rationale decisions from an engineering trade-off

e space you need

Way forward

- Aim at simplification
- Redefine the approach
 - A new protocol shall take into account (at least...)
 - User goals for requesting it (focus the requirements on the user applications and reference system architecture)
 - Existing items and constraints to take into account (e.g. existing protocols, devices, standards,...) but maybe with adaptations/tailorisation
 - Implementation aspects (design, validation, operations...)
 - Eventually a trade-off defines a solution which is the result of a rational compromise

>A specific "task-force" could implement this approach

Minor comments follow...

All the space you need

General comments

Some elements are used before their definition:

- Page 43 last paragraph:
 - « A time-slot is defined by SpaceWire-RT to be long enough to allow six packets of maximum permitted length to be sent in one time-slot ».
 - Why six packets? What is the maximum length? See page 48.
- Page 45:

space you need

- « This is set up by the network manager. [...] During a master time-slot a network manager can send network configuration packages.».
- What is the network manager? See p 119 (and this is not really a definition).

General comments

Some elements are not clear and/or require precisions:

- P78: The "kill", ACK, wait, BFCT and wait intervals are then reasonably deterministic in length, so that no other traffic is flowing when the Data PDU interval starts.
- P42-43: The traffic generated by SpaceWire FCT is not taken into account. The FCT consumes a part of the bandwidth that cannot be used (and may introduce latency).

space you need

