
ECSS-E-50-11A

Draft 0.8, 26 May 2008

1

Space engineering

SpaceWire Protocols

ECSS Secretariat

ESA-ESTEC

Requirements & Standards Division

Noordwijk, The Netherlands

This ECSS is a draft standard circulated for xxxxxxxxxx. It is therefore subject to change without notice

and may not be referred to as an ECSS Standard until published as such.

xxxxxxxxxx ends on XX XXXXXX 2007

ECSS-E-50-11A

Draft 0.8, 26 May 2008

2

This Standard is one of the series of ECSS Standards intended to be applied together for the

management, engineering and product assurance in space projects and applications. ECSS is a

cooperative effort of the European Space Agency, national space agencies and European industry

associations for the purpose of developing and maintaining common standards.

Requirements in this Standard are defined in terms of what shall be accomplished, rather than in

terms of how to organize and perform the necessary work. This allows existing organizational

structures and methods to be applied where they are effective, and for the structures and methods

to evolve as necessary without rewriting the standards.

The formulation of this Standard takes into account the existing ISO 9000 family of documents.

This Standard has been prepared by the SpaceWire Working Group, reviewed by the ECSS Ex-

ecutive Secretariat and approved by the ECSS Technical Authority.

Disclaimer

ECSS does not provide any warranty whatsoever, whether expressed, implied, or statutory, in-

cluding, but not limited to, any warranty of merchantability or fitness for a particular purpose or

any warranty that the contents of the item are error-free. In no respect shall ECSS incur any li-

ability for any damages, including, but not limited to, direct, indirect, special, or consequential

damages arising out of, resulting from, or in any way connected to the use of this standard,

whether or not based upon warranty, contract, tort, or otherwise; whether or not injury was sus-

tained by persons or property or otherwise; and whether or not loss was sustained from, or arose

out of, the results of, the item, or any services that may be provided by ECSS.

Published by: ESA Requirements and Standards Division

 ESTEC, P.O. Box 299,

 2200 AG Noordwijk

 The Netherlands

ISSN: 1028-396X

Price: € 30

Printed in: The Netherlands.

Copyright: 2007 © by the European Space Agency for the members of ECSS

ECSS-E-50-11A

Draft 0.8, 26 May 2008

3

Change log

ECSS-E-50-11A

Draft 0.8, 26 May 2008

4

Table of contents

Change log ... 3

Introduction .. 8

1. Scope .. 9

2. Normative references ... 10

3. Terms, definitions and abbreviated terms ... 12

3.1. Terms defined in other standards .. 12

3.2. General .. 12

3.3. Terms specific to the present standard .. 12

3.4. Abbreviated terms ... 14

4. Principles ... 16

4.1. SpaceWire Protocols ... 16

4.2. Remote Memory Access Protocol (RMAP) ... 16

4.3. CCSDS Packet Encapsulation Protocol .. 16

5. Protocol identification .. 18

5.1. Overview .. 18

5.2. Protocol identification .. 18

5.2.1. Addressing .. 18

5.2.2. Protocol Identifier ... 18

5.2.3. Extended Protocol Identifier ... 19

5.2.4. Ignoring unknown protocols ... 20

5.2.5. Protocol Identifier and Extended Protocol Identifier Allocation .. 20

6. Remote memory access protocol ... 23

6.1. Overview .. 23

6.1.1. Purpose ... 23

6.1.2. Guide to clause 6 .. 23

6.1.3. RMAP operations ... 23

6.2. RMAP command and reply fields .. 25

6.2.1. Target SpaceWire Address field ... 25

6.2.2. Target Logical Address field .. 25

6.2.3. Protocol Identifier field ... 25

ECSS-E-50-11A

Draft 0.8, 26 May 2008

5

6.2.4. Instruction field ... 25

6.2.5. Key field ... 27

6.2.6. Reply Address field .. 27

6.2.7. Initiator Logical Address field .. 28

6.2.8. Transaction Identifier field ... 28

6.2.9. Extended Address field ... 28

6.2.10. Address field ... 29

6.2.11. Data Length field .. 29

6.2.12. Header CRC field .. 29

6.2.13. Data field .. 29

6.2.14. Mask field ... 29

6.2.15. Data CRC field .. 29

6.2.16. Reply SpaceWire Address field .. 29

6.2.17. Status field .. 29

6.3. Cyclic Redundancy Code ... 30

6.4. Write Command ... 31

6.4.1. Write command format ... 31

6.4.2. Write reply format .. 34

6.4.3. Write action... 35

6.5. Read Command .. 43

6.5.1. Read command format .. 43

6.5.2. Read reply format ... 45

6.5.3. Read action ... 47

6.6. Read-Modify-Write Command .. 53

6.6.1. Read-modify-write command format .. 53

6.6.2. Read-modify-write reply format ... 56

6.6.3. Read-modify-write action ... 58

6.7. Error and status codes .. 66

6.7.1. Error and status codes ... 66

6.8. Partial Implementations of RMAP ... 68

6.8.1. Limited functionality nodes .. 68

6.8.2. Partial implementations .. 68

6.9. RMAP Conformance .. 68

6.9.1. Overview ... 68

6.9.2. RMAP Partial implementations .. 69

6.10. Annex RMAP CRC Implementation (informative) ... 73

6.10.1. VHDL implementation of RMAP CRC .. 73

6.10.2. C-code implementation of RMAP CRC ... 75

6.10.3. RMAP CRC test patterns .. 76

ECSS-E-50-11A

Draft 0.8, 26 May 2008

6

6.11. Annex Example Service Interface Specification (informative) .. 83

6.11.1. Write Service .. 83

6.11.2. Read Service ... 86

6.11.3. Read-Modify-Write Service ... 89

7. CCSDS Packet Encapsulation Protocol ... 94

7.1. Overview .. 94

7.1.1. Purpose ... 94

7.1.2. Guide to clause 7 .. 94

7.2. CCSDS Packet Encapsulation Protocol fields .. 94

7.2.1. Target SpaceWire Address field ... 94

7.2.2. Target Logical Address field .. 95

7.2.3. Protocol Identifier field ... 95

7.2.4. User Application 1 field .. 95

7.2.5. User Application 2 field .. 95

7.2.6. CCSDS Packet field .. 95

7.3. CCSDS Packet Encapsulation Protocol format .. 95

7.4. CCSDS Packet Encapsulation Protocol Action .. 96

7.4.1. Overview .. 96

7.4.2. Send request .. 97

7.4.3. Transfer packet ... 97

7.4.4. Packet indication ... 97

7.5. Annex Example Service Interface Specification for CCSDS Packet Encapsulation Protocol 98

7.5.1. CCSDS Packet Transfer Service ... 98

7.5.2. CCSDS_PACKET.send .. 98

7.5.3. CCSDS_PACKET.indication ... 98

Figures

Figure 5-1 Protocol Identifier position .. 19

Figure 5-2 Extended Protocol Identifier .. 20

Figure 6-1 Write Command Format .. 32

Figure 6-2 Write Reply Format ... 34

Figure 6-3 Write Command/Reply Sequence .. 36

Figure 6-4 Write Command Header Error ... 37

Figure 6-5 Write Data Authorisation Rejection ... 39

Figure 6-6 Write Command Data Error ... 41

Figure 6-7 Write Reply Error .. 43

Figure 6-8 Read Command Format ... 44

Figure 6-9 Read Reply Format .. 46

Figure 6-10 Read Command/Reply Sequence ... 48

ECSS-E-50-11A

Draft 0.8, 26 May 2008

7

Figure 6-11 Read Command Header Error .. 49

Figure 6-12 Read Authorisation Rejection .. 51

Figure 6-13 Read Reply Header Error ... 52

Figure 6-14 Read Reply Data Error ... 53

Figure 6-15 Read-Modify-Write Command Format .. 54

Figure 6-16 Example Operation of Read-Modify-Write Command .. 56

Figure 6-17 Read-Modify-Write Reply Format ... 57

Figure 6-18 Read-Modify-Write Command/Reply Sequence ... 59

Figure 6-19 Read-Modify-Write Command Header Error .. 60

Figure 6-20 Read-Modify-Write Command Data Error .. 62

Figure 6-21 Read-Modify-Write Authorisation Rejection ... 63

Figure 6-22 Read-Modify-Write Reply Error .. 65

Figure 6-23 RMW Reply Data Error ... 66

Figure 7-1 Encapsulated CCSDS Packet Format ... 96

Figure 7-2 CCSDS Packet Encapsulation Protocol Packet Transfer ... 97

Tables

Table 5-1 Protocol Identifier Allocation .. 20

Table 6-1 RMAP Command Codes ... 26

Table 6-2 Reply Address field Size ... 27

Table 6-3 Example Reply Address field to Reply SpaceWire Address mappings... 28

Table 6-4 Error and Status Codes .. 67

Table 6-5: SpaceWire RMAP Write Command .. 69

Table 6-6 Example of Write Command Product Characteristics ... 70

Table 6-7: SpaceWire RMAP Read Command ... 70

Table 6-8 Example Read Command Product Characteristics .. 71

Table 6-9: SpaceWire RMAP Read-Modify-Write Command .. 71

Table 6-10 Example Read-Modify-Write Command Product Characteristics .. 72

ECSS-E-50-11A

Draft 0.8, 26 May 2008

8

Introduction

xxx

ECSS-E-50-11A

Draft 0.8, 26 May 2008

9

1.
Scope

This xxxxx

ECSS-E-50-11A

Draft 0.8, 26 May 2008

10

2.
Normative references

The following dated normative documents are called by the requirements of this ECSS Standard

and therefore constitute requirements to it. Subsequent amendments to, or revisions of any of

these publications do not apply.

NOTE However, parties to agreements based on this ECSS Standard are

encouraged to investigate the possibility of applying the most re-

cent editions of the normative documents indicated be-low.

ECSS-P-001B ECSS – Glossary of terms

ECSS-E50-12A SpaceWire – links, nodes, routers and networks

ECSS-E-50-11A

Draft 0.8, 26 May 2008

11

3.This heading is here because of problems with a
clause not being a heading

ECSS-E-50-11A

Draft 0.8, 26 May 2008

12

3.
Terms, definitions and abbreviated terms

3.1. Terms defined in other standards

For the purpose of this Standard, the terms and definitions from ECSS-P-001B apply.

3.2. General

In this document hexadecimal numbers are written with the prefix 0x, for example 0x34 and

0xDF15. Binary numbers are written with the prefix 0b, for example 0b01001100 and 0b01.

Decimal numbers have no prefix.

3.3. Terms specific to the present standard

3.3.1. byte

8-bits where bit 7 is the most-significant bit

3.3.2. command

an instruction to a SpaceWire node (target) to perform some action

EXAMPLE write data to memory

3.3.3. command packet

a packet that contains a command

3.3.4. confirmation

a primitive passed from a service provider to a service user to indicate the success or otherwise

of a previous service request

3.3.5. data character

a SpaceWire symbol containing 8-bits of user information

3.3.6. EEP

Error End of Packet marker of a Packet which indicates that the Packet was terminated prema-

turely

3.3.7. EOP

End Of Packet marker of the Packet

ECSS-E-50-11A

Draft 0.8, 26 May 2008

13

3.3.8. extender protocol identifier

two data characters following a protocol identifier which has value 0x00 that identify a particular

protocol being used for communication

3.3.9. logical address

identifier of a initiator or target which can be used to route a Packet to the target or, if path ad-

dressing is being used, to confirm that the final target is the correct one i.e. that the logical ad-

dress of the target matches the logical address in the packet

3.3.10. indication

a primitive passed from a service provider to a service user to provide information or status to

the service user

3.3.11. initiator

SpaceWire node that starts a transaction by sending a command to a SpaceWire node

3.3.12. initiator user application

an application in an initiator that is using the SpaceWire protocol services

3.3.13. memory

any type of addressable storage element including random access memory, registers, FIFO,

mailboxes

3.3.14. packet

a SpaceWire packet

3.3.15. path address

sequence of one or more SpaceWire data characters that defines the route to a target by specify-

ing, for each router encountered on the way to the target, the output port that a Packet is for-

warded through

3.3.16. protocol identifier

data character that identifies a particular protocol being used for communication

3.3.17. reply

a response sent by a target to the initiator or some other node expecting the reply to provide the

required information or to indicate that some commanded action has been completed by the tar-

get

3.3.18. reply packet

packet containing a reply

3.3.19. request

a primitive passed from a service user to a service provider to request a service

3.3.20. response

a primitive passed from a service user to a service provider in response to an indication from the

service provider

3.3.21. target

SpaceWire node that responds to a command sent by an initiator

ECSS-E-50-11A

Draft 0.8, 26 May 2008

14

3.3.22. target user application

an application in a target that is using the SpaceWire protocol services

3.3.23. transaction

an interaction between an initiator and a target

3.3.24. word

multiple bytes held in a single memory location

3.4. Abbreviated terms

The following abbreviations are defined and used within this standard:

Abbreviation Meaning

CRC Cyclic Redundancy Code

DMA Direct Memory Access

EEP Error End of Packet

EOP End Of Packet

FCT Flow Control Token

FIFO First In First Out

ID Identifier

Inc Increment

Len Length

LS Least-Significant

LSB Least-Significant Bit

MS Most-Significant

MSB Most-Significant Bit

RMAP Remote Memory Access Protocol

RMW Read-Modify-Write

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit

ECSS-E-50-11A

Draft 0.8, 26 May 2008

15

4.This heading is here because of problems with
clause not being a heading

ECSS-E-50-11A

Draft 0.8, 26 May 2008

16

4.
Principles

4.1. SpaceWire Protocols

This standard contains several protocols that can be used in conjunction with the SpaceWire pro-

tocols defined in ECSS-E50-12A.

To distinguish between the various protocols a protocol identifier is used which is described in

clause 5. The protocols that operate over SpaceWire are then described one per clause from

clause 6 onwards.

4.2. Remote Memory Access Protocol (RMAP)

The aim of RMAP is to support reading from and writing to memory in a remote SpaceWire

node. RMAP can be used to configure a SpaceWire network, control SpaceWire nodes, and to

transfer data to and from SpaceWire nodes. RMAP is defined in clause 6.

4.3. CCSDS Packet Encapsulation Protocol

The aim of the CCSDS Packet Encapsulation Protocol is to transfer CCSDS Packets across a

SpaceWire network. It does this by encapsulating the CCSDS Packet in a SpaceWire packet,

transferring it across the SpaceWire network and then extracting the CCSDS Packet at the target.

The CCSDS Packet Encapsulation Protocol is defined in clause 7.

ECSS-E-50-11A

Draft 0.8, 26 May 2008

17

5.This heading is here because of problems with
clause not being a heading

ECSS-E-50-11A

Draft 0.8, 26 May 2008

18

5.
Protocol identification

5.1. Overview

The protocol identification scheme enables many different protocols to operate concurrently over

a SpaceWire network without them interfering with each other. To achieve this, an identifier is

given to each protocol. Nodes receiving packets process and respond to them according to the

protocol specified by the Protocol Identifier in the packet. If a packet arrives with a particular

Protocol Identifier that is not supported by a node then it is ignored.

5.2. Protocol identification

5.2.1. Addressing

a. A packet containing a Protocol Identifier shall start with a single byte logical address when it

arrives at the target.

NOTE See Figure 5-1.

NOTE When sent by the initiator the packet can have one or more lead-

ing path or logical address bytes which are stripped off (Space-

Wire Address) on the way through the SpaceWire network leav-

ing the single logical address byte when it arrives at the target.

b. The logical address 254 (0xFE) shall be used as a default value when the target does not have

another value specified for its logical address.

NOTE When the initiator does not know the logical address of the target

the default logical address 254 (0xFE) can be used.

c. A target may choose to ignore packets with logical address 254 (0xFE).

NOTE If a packet with a logical address is ignored then the target can

record and make available a count of the number of packets it re-

ceived and ignored with logical address 254 (0xFE).

d. A target may accept packets with one or more different logical address values.

EXAMPLE A node accepting packets with logical addresses 60, 61

or 254.

5.2.2. Protocol Identifier

a. A Protocol Identifier shall comprise a single byte immediately following the logical address.

NOTE See Figure 5-1.

b. A value of zero shall be used to identify an Extended Protocol Identifier.

NOTE The value of zero in the Protocol Identifier byte is reserved for

extension of the Protocol Identifier, as specified in sub-clause

5.2.3.

ECSS-E-50-11A

Draft 0.8, 26 May 2008

19

c. A Protocol Identifier with a value of 255 (0xFF) shall not be used.

NOTE It is reserved for future use.

Logical

Address

Protocol

ID

SpW

Address

Logical

Address

Protocol

ID

Logical Address with Protocol ID

SpaceWire Address and Logical Address with Protocol ID

Figure 5-1 Protocol Identifier position

5.2.3. Extended Protocol Identifier

a. If an Extended Protocol Identifier is supported, the following shall apply:

1. Protocol Identifier has the value zero (0x00)

2. The two bytes following the reserved Protocol Identifier (zero) form a 16-bit Extended

Protocol Identifier

NOTE This allows up to 65535 protocols to be carried over a Space-

Wire network.

NOTE An Extended Protocol Identifier need not be implemented.

NOTE See Figure 5-2.

b. If an Extended Protocol Identifier is not supported, then a packet with a Protocol Identifier

with the value zero (reserved Protocol Identifier) shall be discarded when received.

NOTE If a target ignores the Extended Protocol Identifier then it can re-

cord and make available a count of the number of packets it re-

ceived with an Extended Protocol Identifier.

c. Extended Protocol Identifiers with values in the range 0x0000 to 0x00FF are reserved and

shall not be used.

d. A packet with an Extended Protocol Identifier with a value in the range 0x0000 to 0x00FF

shall be discarded when received.

NOTE These values are reserved for future use.

ECSS-E-50-11A

Draft 0.8, 26 May 2008

20

Protocol ID

(0x00)

Extended

Protocol ID

MS

Logical

Address

Extended

Protocol ID

LS

SpW

Address

Protocol ID

(0x00)

Extended

Protocol ID

MS

Logical

Address

Extended

Protocol ID

LS

Logical Address with Extended Protocol ID

SpaceWire Address and Logical Address with Extended Protocol ID

Figure 5-2 Extended Protocol Identifier

5.2.4. Ignoring unknown protocols

If a packet arrives with a Protocol Identifier or Extended Protocol Identifier that is not
supported (unknown) by that target then the packet shall be discarded.

NOTE The target can count the number of packets that arrive at a target

with unknown Protocol Identifier or Extended Protocol Identifier

can be kept and made available by the target.

5.2.5. Protocol Identifier and Extended Protocol Identifier Alloca-
tion

a. Protocol Identifiers in the range 1 to 239 (0x01 to 0xEF) that shall be used are those listed in

Table 5-1.

Table 5-1 Protocol Identifier Allocation

Protocol Identifier Protocol

0 Extended Protocol Identifier

1 Remote Memory Access Protocol

2 CCSDS Packet Encapsulation Protocol

239 Serial Transfer Universal Protocol

NOTE These identifiers have been assigned by the SpaceWire working

group. The protocols starting at number 1 and working upwards

as defined in this standard document define the current set of ap-

proved SpaceWire protocols and their Protocol Identifiers. The

protocols starting at 239 and working downwards are legacy pro-

tocols and are not covered by this standard document.

NOTE The reader is advised to consult any amendment sheets for the

latest set of Protocol Identifiers and Extended Protocol Identifi-

ers. The amendment sheets are to be found on the ECSS website.

b. Protocol Identifiers in the range 240 to 254 (0xF0 to 0xFE) shall be assigned by the project.

NOTE Developers can use these Protocol Identifiers but it is important

to note that they can clash with protocols being developed by

ECSS-E-50-11A

Draft 0.8, 26 May 2008

21

other users. Concurrent operation of different protocols is only

assured for Protocol Identifiers in the range 1 to 239 (0x01 to

0xEF).

NOTE Proven protocols can be recommended for adoption by the

SpaceWire working group and then be included in future revi-

sions or extensions to this SpaceWire Protocols standard. Once

adopted they are given a unique Protocol Identifier in the range 1

to 239.

NOTE No Extended Protocol Identifiers have been allocated.

ECSS-E-50-11A

Draft 0.8, 26 May 2008

22

6.This heading is here because of problems with
clause not being a heading

ECSS-E-50-11A

Draft 0.8, 26 May 2008

23

6.
Remote memory access protocol

6.1. Overview

6.1.1. Purpose

The remote memory access protocol (RMAP) has been designed to support a wide range of

SpaceWire applications. Its primary purposes however are to configure a SpaceWire network, to

control SpaceWire nodes and to gather data and status information from those nodes. RMAP can

operate alongside other communication protocols running over SpaceWire.

RMAP can be used to configure SpaceWire routing switches, setting their operating parameters

and routing table information. It can also be used to monitor the status of those routing switches.

RMAP can be used to configure and read the status of nodes on the SpaceWire network. For ex-

ample, the operating data rate of a node can be set to 100 Mbits/s and the interface can be set to

auto-start mode. RMAP can also be used to download and debug software on a remote processor.

For simple SpaceWire units without an embedded processor, RMAP can be used to set applica-

tion configuration registers, to read status information and to read from or write data to memory

in the unit.

For intelligent SpaceWire units RMAP can provide the basis for a wide range of communication

services. Configuration, status gathering and data transfer to and from memory or mailboxes can

be supported.

6.1.2. Guide to clause 6

Specification of the fields used in RMAP commands and replies is given in sub-clause 6.2. The

CRC used by RMAP is specified in sub-clause 6.3. The write command is defined in sub-clause

6.4, the read command in sub-clause 6.5 and the read-modify-write command in sub-clause 6.6.

The error codes that are used in RMAP replies are listed in sub-clause 6.7. The way in which

partial implementations of RMAP can be implemented is described in sub-clause 6.8. Sub-clause

6.9 specifies the conformance statements i.e. sub-clauses that are implemented and the ancillary

information that is provided, in order for a supplier to claim conformance to the SpaceWire

RMAP standard. Example VHDL and C-code for the 8-bit CRC used by RMAP is given in 6.10.

6.1.3. RMAP operations

RMAP is used to write to and read from memory, registers, FIFO memory, mailboxes, etc, in a

target on a SpaceWire network. Input/output registers, control/status registers and FIFOs are

memory-mapped and therefore are accessed as memory. Mailboxes are indirect memory areas

that are referenced using a memory address.

All read and write operations defined in the RMAP protocol are posted operations i.e. the initia-

tor does not wait for a reply to be received. This means that many read and write commands can

be outstanding at any time. There is no timeout mechanism implemented in RMAP for missing

replies. If a reply timeout mechanism is used, it is implemented in the initiator user application.

6.1.3.1. Write commands

ECSS-E-50-11A

Draft 0.8, 26 May 2008

24

The write command provides a means for one node, the initiator, to write zero or more bytes of

data into a specified area of memory in another node, the target on a SpaceWire network.

Write commands can be acknowledged or not acknowledged by the target when they have been

received correctly. If the write command is to be acknowledged and there is an error with the

write command, the target replies with an error/status code to the initiator (or other node) that

sent the command. The error/status code can only be sent to the initiator if the write command

header was received intact, so that a target that detected an error knows where to send the reply.

If no reply is requested then the fact that an error occurred can be stored in a status register in the

target.

Write commands can perform the write operation after verifying that the data has been trans-

ferred to the target without error, or it can write the data without verification. Verification on the

data can be performed only by buffering in the target to store the data while it is being verified,

before it is written. The amount of buffering is likely to be limited so verified writes can only be

performed for a relatively small amount of data that fits into the available buffer at the target.

Verified writes are normally used when writing to configuration or control registers. Larger

amounts of data can be written but without verification prior to writing. Verification in this case

is done after the data has been written.

The acknowledged/non-acknowledged and verified/non-verified options to the write command

result in four different write operations:

 Write non-acknowledged, non-verified – writes zero or more bytes to memory in a tar-

get. The command header is checked using a CRC before the data is written, but the data it-

self is not checked before it is written. No reply is sent to the initiator of the write command.

This command is typically used for writing large amounts of data to a target where it can be

safely assumed that the write operation completed successfully. For example the writing of

camera data to a temporary working buffer.

 Write non-acknowledged, verified – writes zero or more bytes to memory in a target.

Both the command header and data are checked using CRCs before the data is written. This

limits the amount of data that can be transferred in a single write operation, but writing erro-

neous data to memory is unlikely. No reply is sent to the initiator of the write command.

This command is typically used for writing command registers and small amounts of data to

a target where it can be safely assumed that the write operation completed successfully. For

example writing many commands to different configuration registers in a device and then

checking for an error using a status register.

 Write acknowledged, non-verified – writes zero or more bytes to memory in a target.

The command header is checked using a CRC before the data is written, but the data itself is

not checked before it is written. A reply to indicate the command execution status is sent to

the initiator of the write command. This command is typically used for writing large

amounts of data to a target where it can be safely assumed that the write operation com-

pleted successfully, but an acknowledgement is required. For example writing sensor data to

memory.

 Write acknowledged, verified – writes zero or more bytes to memory in a target. Both

the command header and data are checked using CRCs before the data is written. This limits

the amount of data that can be transferred in a single write operation, but writing erroneous

data to memory is unlikely. A reply to indicate the command execution status is sent to the

initiator of the write command. This command is typically used for writing small amounts of

data to a target where it is important to have confirmation that the write operation was exe-

cuted successfully. For example writing to configuration registers.

6.1.3.2. Read commands

The read command provides a means for one node, the initiator, to read zero or more bytes of

data from a specified area of memory in another node, the target on a SpaceWire network. The

data read is returned in a reply packet which normally goes back to the initiator.

6.1.3.3. Read-modify-write

ECSS-E-50-11A

Draft 0.8, 26 May 2008

25

The read-modify-write command provides a means for one node, the initiator, to read a memory

location in another node, the target, modify the value read in some way and then write the new

value back to the same memory location. The original value read from memory is returned in a

reply packet to the initiator.

6.2. RMAP command and reply fields

6.2.1. Target SpaceWire Address field

a. The Target SpaceWire Address field shall comprise zero or more data characters forming the

SpaceWire address which is used to route the command to the target.

NOTE The Target SpaceWire Address is stripped off by the time the

packet reaches the target.

b. SpaceWire path addressing and regional addressing may be used.

c. The Target SpaceWire Address field shall not be used when a single logical address is being

used for routing the command to the target.

NOTE In this case the command is routed to the target by the Target

Logical Address contained in the Target Logical Address field.

6.2.2. Target Logical Address field

Target Logical Address field shall be an 8-bit field that contains a logical address of the
target.

NOTE The Target Logical Address field is normally set to a logical ad-

dress recognised by the target.

NOTE If the target does not have a specific logical address then the

Target Logical Address field can be set to the default value 254

(0xFE).

NOTE A target can have more than one logical address.

6.2.3. Protocol Identifier field

a. The Protocol Identifier field shall be an 8-bit field that contains the Protocol Identifier.

b. The Protocol Identifier field shall be set to the value 1 (0x01) which is the Protocol Identifier

for the Remote Memory Access Protocol.

6.2.4. Instruction field

6.2.4.1. General

The Instruction field shall be an 8-bit composite field that comprises the packet type,
command and Reply Address length fields.

6.2.4.2. Packet type field

a. The Packet Type field shall be a 2-bit field that determines the type of RMAP packet i.e. a

command (0b01) or reply (0b00).

b. The other possible values (0b10 and 0b11) of the packet type field are reserved.

6.2.4.3. Command field

a. Command field shall be:

1. A 4-bit field in an RMAP command that specifies the type of command, or

ECSS-E-50-11A

Draft 0.8, 26 May 2008

26

2. A 4-bit field in an RMAP reply that specifies the type of command that caused the reply.

b. The command codes shall have the meanings listed in Table 6-1.

Table 6-1 RMAP Command Codes

Bit 5 Bit 4 Bit 3 Bit 2 Command Field

Write/

Read

Verify

Data

Before

Write

Reply Increment

Address

Function

0 0 0 0 Invalid

0 0 0 1 Invalid

0 0 1 0 Read single address

0 0 1 1 Read incrementing addresses

0 1 0 0 Invalid

0 1 0 1 Invalid

0 1 1 0 Invalid

0 1 1 1 Read-Modify-Write incrementing ad-

dresses

1 0 0 0 Write, single address, don’t verify before

writing, no reply

1 0 0 1 Write, incrementing addresses, don’t ver-

ify before writing, no reply

1 0 1 0 Write, single address, don’t verify before

writing, send reply

1 0 1 1 Write, incrementing addresses, don’t ver-

ify before writing, send reply

1 1 0 0 Write, single address, verify before writ-

ing, no reply

1 1 0 1 Write, incrementing addresses, verify be-

fore writing, no reply

1 1 1 0 Write, single address, verify before writ-

ing, send reply

1 1 1 1 Write, incrementing addresses, verify be-

fore writing, send reply

6.2.4.4. Reply Address length field

The Reply Address Length field shall be:

1. A 2-bit field in an RMAP command that determines the number of bytes in the Reply

Address field of a command.

2. A 2-bit field in an RMAP reply that is a copy of the 2-bit Reply Address Length field in

the command that caused the reply.

ECSS-E-50-11A

Draft 0.8, 26 May 2008

27

6.2.5. Key field

The Key field shall be an 8-bit field that contains a key which is matched by the target
user application in order for the RMAP command to be authorised.

NOTE The Key is only used for command authorisation. It is not used

for other purposes.

6.2.6. Reply Address field

a. The Reply Address field shall be a 0, 4, 8 or 12-byte field in a command that contains the

SpaceWire address for the reply to the command.

b. The size of the Reply Address field shall depend on the value of the Reply Address Length

field as detailed in Table 6-2.

Table 6-2 Reply Address field Size

Value of Reply Address Length Field Size of Reply Address field

0b00 0

0b01 4 bytes

0b10 8 bytes

0b11 12 bytes

NOTE The Reply Address is not needed if logical addressing is being

used. The Reply Address is normally used by the target to send

replies or data back to the initiator that requested a write or read

operation using path addressing. The Reply Address allows path

addressing and regional logical addressing to be used to specify

the node that is to receive the reply (normally the initiator).

c. Leading bytes with the value 0x00 in the Reply Address field shall be ignored.

d. If the Reply Address Length field is not zero and the Reply Address bytes are all zero (0x00),

a single zero value data character shall be sent as part of the Reply SpaceWire Address field.

NOTE This is so that a Reply SpaceWire Address comprising a single

zero (0x00) data character is possible.

e. Any characters in the Reply Address field after the leading bytes with the value 0x00 shall

form the Reply SpaceWire Address.

f. SpaceWire path addressing and regional addressing shall be used to form the Reply Address

field.

EXAMPLE Some examples of the mapping between the contents

of the Reply Address field and the Reply SpaceWire

Address are listed in Table 6-3.

ECSS-E-50-11A

Draft 0.8, 26 May 2008

28

Table 6-3 Example Reply Address field to Reply

SpaceWire Address mappings

Reply Address field Resulting Reply SpaceWire Address

0x00 0x00 0x00 0x00 0x00

0x00 0x00 0x01 0x02 0x01 0x02

0x00 0x01 0x00 0x02 0x01 0x00 0x02

0x00 0x01 0x02 0x00 0x01 0x02 0x00

0x00 0x00 0x00 0x01

0x02 0x03 0x04 0x05

0x01 0x02 0x03 0x04 0x05

0x00 0x00 0x66 0x05 0x66 0x05

0x00 0x54 0x08 0x00 0x54 0x08 0x00

g. The Reply Address field shall not be used when a single logical address is used for routing

the reply to its initiator (or other node).

NOTE In this case the reply is routed to the initiator by the Initiator

Logical Address.

6.2.7. Initiator Logical Address field

The Initiator Logical Address field shall be an 8-bit field that contains either:

 The logical address of the initiator of a command packet, if the initia-

tor has a logical address, or

 254 (0xFE) otherwise.

NOTE The value 254 (0xFE) is the default logical address (see 5.2.1).

NOTE An initiator can have more than one logical address.

6.2.8. Transaction Identifier field

a. The Transaction Identifier field shall be a 16-bit field used to associate replies with the com-

mand that caused the reply.

b. The Transaction Identifier in a reply shall have the same value as the Transaction Identifier in

the command that caused the reply.

c. The most significant byte of the Transaction Identifier shall be sent first.

NOTE Typically Transaction Identifiers are an incrementing integer se-

quence, with each successive RMAP transaction being given the

next number in the sequence. The intention of the Transaction

Identifier is to uniquely identify a transaction.

6.2.9. Extended Address field

The Extended Address field shall be an 8-bit field that contains the most-significant 8-
bits of the memory address extending the 32-bit memory address to 40-bits.

ECSS-E-50-11A

Draft 0.8, 26 May 2008

29

6.2.10. Address field

a. The Address field shall be a 32-bit field that contains the least-significant 32-bits of the

memory address.

b. The most significant byte of the Address field shall be sent first.

6.2.11. Data Length field

a. The Data Length field shall be a 24-bit field that contains the length in bytes of the data field

or data and mask field in a command or reply.

b. The most significant byte of the Data Length field shall be sent first.

6.2.12. Header CRC field

The Header CRC field shall be an 8-bit field that contains an 8-bit Cyclic Redundancy
Code (CRC) covering each byte in the header, starting with the Target Logical Address
and ending with the byte before the Header CRC in a command and starting with the
Initiator Logical Address and ending with the byte before the Header CRC in a reply.

6.2.13. Data field

The Data field shall be a variable length field containing the data bytes that are written
in a write command or the data bytes that are read in a read reply, or read and written
in a read-modify-write command and reply.

NOTE The order of the bytes in the data field is up to the specific im-

plementation and is defined in the target product characteristic

table (see sub-clause 6.9). This is a change from draft F, which

stated that “when writing to memory organised in words (e.g. 32-

bit words) then the first byte sent is the most significant byte of

the word.”

6.2.14. Mask field

The Mask field shall be a variable length field containing the mask in a read-modify-
write command.

6.2.15. Data CRC field

The Data CRC field shall be an 8-bit field that contains an 8-bit Cyclic Redundancy
Code (CRC) covering each byte in the data and mask field starting with the byte after
the Header CRC and ending with the byte before the Data CRC.

6.2.16. Reply SpaceWire Address field

The Reply SpaceWire Address field shall be a variable length field formed from the
contents of the Reply Address field of a command which is used to route a reply back
to the initiator or other intended destination for the reply.

6.2.17. Status field

The Status field shall be an 8-bit field in a reply containing a status/error code as de-
fined in sub-clause 6.7.

ECSS-E-50-11A

Draft 0.8, 26 May 2008

30

6.3. Cyclic Redundancy Code

a. The same method of calculating the CRC shall be used for both the Header CRC and the

Data CRC.

b. The CRC calculation procedures shall:

1. use modulo 2 arithmetic for polynomial coefficients;

2. use a systematic binary (n+8, n) block code, where n+8 is the number of bits of the

codeword c(x) and n is divisible by 8; n is the number of bits covered by the CRC;

3. use the following generating polynomial:

g(x) = x
8
 + x

2
 + x + 1

4. use byte format as input and output, for which the bits are represented as:

b7 b6 b5 b4 b3 b2 b1 b0

 where b7 is the most significant bit and b0 is the least significant bit;

c. The CRC generation procedure shall behave as follows:

1. The procedure accepts an n-bit input which is used to construct m(x), where:

 the n-bit input is defined to be the set of bits Bi,j grouped into n/8 bytes where

i={0, 1, …, n/8-1} is the byte index and j={7,6, …, 0} is the bit index;

 the n/8 input bytes correspond to the RMAP fields covered by the CRC excluding

the CRC byte; the first byte transmitted has index i=0; the last byte transmitted

has index i=n/8-1;

 m(x) is a polynomial mn-1x
n-1

 + mn-2x
n-2

 + ... + m0x
0
 having binary coefficients mi;

 m(x) can be represented as an n-bit vector where coefficient mn-1 of the highest

power of x is the most significant bit and coefficient m0 of the lowest power of x is

the least significant bit;

 the bit vector representation of m(x) is formed by concatenating the n/8 bytes of

the input in transmission order, where the least significant bit b0 of each byte is

taken first and the most significant bit b7 of each byte is taken last:

mn-1=B0,0, mn-2=B0,1, mn-3=B0,2, …, mn-7=B0,6, mn-8=B0,7,

mn-9=B1,0, mn-10=B1,1, mn-11=B1,2, …, mn-15=B1,6, mn-16=B1,7,

…,

m7=B n/8-1,0, m6=B n/8-1,1, m5=B n/8-1,2, …, m1=B n/8-1,6, m0=Bn/8-1,7

2. The procedure generates the remainder polynomial r(x) given by the equation:

r(x) = [m(x) · x8
] modulo g(x)

where r(x) = r7x
7
 + r6x

6
 + ... + r0x

0
 and ri are binary coefficients;

3. The Header and Data CRC are formed from the 8-bit vector representation of r(x); the

least significant bit b0 of the CRC byte is coefficient r7 of the highest power of x, while

the most significant bit b7 of the CRC byte is coefficient r0 of the lowest power of x:

b7=r0, b6=r1, b5=r2, b4=r3, b3=r4, b2=r5, b1=r6, b0=r7

NOTE The codeword c(x) = m(x) · x
8
 + r(x) is formed by concatenating

the bit vector representations of m(x) and r(x).

NOTE When a Galois version of a Linear Feedback Shift Register is

used for CRC generation, its initial value is zero.

NOTE Example VHDL and C-code implementations of this CRC algo-

rithm are included in sub-clause 6.10.

ECSS-E-50-11A

Draft 0.8, 26 May 2008

31

d. If the CRC generation procedure is applied to the bytes covered by the CRC excluding the

CRC byte then the generated CRC can be compared directly with the expected CRC byte. If

the generated and expected CRC bytes are equal then no errors have been detected; if they

are different then an error has been detected.

e. If the CRC generation procedure is applied to the bytes covered by the CRC including the

CRC byte then the output of the CRC generation procedure will be zero if no errors have

been detected and non-zero if an error has been detected.

NOTE When the codeword c*(x) is input to the CRC generator then the

remainder is the syndrome: s(x) = [c*(x) · x
8
] modulo g(x). The

codeword c*(x) is the concatenation of the Header or Data bytes

covered by the CRC, followed by the CRC byte.

f. If the value of the data length field is zero, then the Data CRC shall be 0x00.

NOTE Read commands and write replies have no Data CRC field.

g. The CRC shall be calculated on the byte stream not the serial bit stream, since the RMAP

protocol operates above the SpaceWire packet level (see ECSS-E50-12A).

NOTE The equivalent bit serial version takes the least-significant bit of

each byte first and does not include data/control or parity bits,

NULL, FCT or other non-data characters.

NOTE See sub-clause 6.10 for some examples of how the CRC is im-

plemented along with some test patterns.

6.4. Write Command

6.4.1. Write command format

6.4.1.1. Fields

The write command shall contain the fields shown in Figure 6-1.

ECSS-E-50-11A

Draft 0.8, 26 May 2008

32

Target Logical Address Protocol Identifier Instruction Key

Initiator Logical Address Transaction Identifier (MS) Transaction Identifier (LS) Extended Address

Address (MS) Address Address Address (LS)

Data Length (MS) Data Length Data Length (LS) Header CRC

Data Data Data Data

Data Data

Data Data CRC EOP

First byte transmitted

Last byte transmitted

Write = 1
Verify data(1)

Don’t Verify (0)
Command = 1

Increment (1)/

No inc (0)

Reply (1)/

No reply (0)
Reserved = 0 Reply Address Length

Bits in Instruction Field

MSB LSB

Packet Type Command Reply Address Length

Target SpW Address Target SpW Address

Reply Address Reply Address Reply Address Reply Address

Reply Address Reply Address Reply Address Reply Address

Reply Address Reply Address Reply Address Reply Address

Figure 6-1 Write Command Format

6.4.1.2. Target SpaceWire Address field

The Target SpaceWire Address field shall be as defined in sub-clause 6.2.1.

6.4.1.3. Target Logical Address field

The Target Logical Address field shall be as defined in sub-clause 6.2.2.

6.4.1.4. Protocol Identifier field

The Protocol Identifier field shall be as defined in sub-clause 6.2.3.

6.4.1.5. Instruction field

6.4.1.5.1. Instruction field format

The Instruction field format shall be as defined in sub-clause 6.2.4.

6.4.1.5.2. Packet type field

The Packet Type field shall be 0b01 to indicate that this is a command.

6.4.1.5.3. Command field

a. The Write/Read bit shall be set (1) for a write command.

b. The Verify-Data-Before-Write bit shall be:

1. Set (1) if the data is to be checked before it is written to memory, and

2. Clear (0) otherwise.

c. The Reply bit shall be:

1. Set (1) if a reply to the write command is required, and

2. Clear (0) otherwise.

d. The Increment/No increment Address bit shall be:

ECSS-E-50-11A

Draft 0.8, 26 May 2008

33

1. Set (1) if data is written to sequential memory addresses.

2. Clear (0) if data is written to a single memory address.

6.4.1.5.4. Reply Address length field

The Reply Address Length field shall be set to the smallest number of 32-bit words that
is able to contain the Reply SpaceWire Address from the target, back to the initiator of
the command packet or some other node that is to receive the reply.

EXAMPLE If three Reply SpaceWire Address bytes are used then

the Reply Address Length field is set to one (0b01).

6.4.1.6. Key field

The Key field shall be as defined in sub-clause 6.2.5.

6.4.1.7. Reply Address field

The Reply Address field shall be as defined in sub-clause 6.2.6.

6.4.1.8. Initiator Logical Address field

The Initiator Logical Address field shall be as defined in sub-clause 6.2.7.

6.4.1.9. Transaction Identifier field

The Transaction Identifier field format shall be as defined in sub-clause 6.2.8.

6.4.1.10. Extended Address field

a. The Extended Address field shall be as defined in sub-clause 6.2.9.

b. The Extended Address field shall hold the most-significant 8-bits of the starting memory ad-

dress to be written to.

6.4.1.11. Address field

a. The Address field format shall be as defined in sub-clause 6.2.10.

b. The Address field shall hold the least-significant 32-bits of the starting memory address to

which the data in a write command is written.

6.4.1.12. Data Length field

The Data Length field format shall be as defined in sub-clause 6.2.11.

NOTE This gives a maximum Data Length of 16 Megabytes -1 in a sin-

gle write command. If a single byte is being written this field is

set to one. If set to zero then no bytes are written to memory

which can be used as a test transaction depending upon the im-

plementation.

6.4.1.13. Header CRC field

The Header CRC field shall contain an 8-bit CRC as defined in sub-clauses 6.2.12 and
6.3.

6.4.1.14. Data field

The Data field shall contain zero or more bytes of data that are written into the memory
of the target as defined in sub-clause 6.2.13.

6.4.1.15. Data CRC field

The Data CRC shall contain an 8-bit CRC as defined in sub-clauses 6.2.15 and 6.3.

ECSS-E-50-11A

Draft 0.8, 26 May 2008

34

6.4.1.16. EOP character

The end of the packet containing the write command shall be indicated by an EOP
character.

6.4.2. Write reply format

6.4.2.1. Format

The format of the reply to a write command shall contain the fields shown in Figure 6-2.

NOTE A reply is sent by the target back to initiator of the write com-

mand or to some other node as defined by the Reply Address

field if requested in the write command. The reply indicates the

success or failure of the write command by the value in the

Status field.

Reply SpW Address

Initiator Logical Address Protocol Identifier Instruction Status

Target Logical Address Transaction Identifier (MS) Transaction Identifier (LS) Header CRC

.... Reply SpW Address

EOP

First byte transmitted

Last byte transmitted

Write = 1
Verify data (1)

Don’t Verify (0)
Reply = 0

Increment (1)/

No inc (0)
Reply = 1Reserved = 0

Bits in Instruction Field

MSB

Packet Type Command

Reply Address Length

LSB

Reply Address Length

Figure 6-2 Write Reply Format

6.4.2.2. Reply SpaceWire Address field

a. The Reply SpaceWire Address field shall comprise zero or more data characters which define

how the reply is routed to the initiator or some other node.

b. The SpaceWire address in the Reply SpaceWire Address field shall be constructed from the

Reply Address field in the command as detailed in sub-clause 6.2.6.

6.4.2.3. Initiator Logical Address field

The Initiator Logical Address field shall be as defined in sub-clause 6.2.7.

6.4.2.4. Protocol Identifier field

The Protocol Identifier field shall be as defined in sub-clause 6.2.3.

6.4.2.5. Instruction field

a. The Instruction field format shall be as defined in sub-clause 6.2.4.

b. The Packet Type field shall be 0b00 to indicate that the RMAP packet is a reply.

c. The Command field shall be set to the same value as in the Command field of the write

command, sub-clause 6.4.1.5.3.

d. The Reply Address Length field shall be set to the same value as in the Reply Address

Length field of the write command, sub-clause 6.4.1.5.4.

6.4.2.6. Status field

ECSS-E-50-11A

Draft 0.8, 26 May 2008

35

a. The Status field format shall be as defined in sub-clause 6.2.17.

b. The Status field shall contain:

1. 0x00 if the command executed successfully

2. A non-zero error code if there was an error with the write command as specified in sub-

clause 6.7.

6.4.2.7. Target Logical Address field

The Target Logical Address field shall be set to either of:

a. The value of the Target Logical Address field of the write command, see sub-clause 6.4.1.3,

or

b. A logical address of the target.

NOTE Normally these are the same.

6.4.2.8. Transaction Identifier field

The Transaction Identifier field shall be set to the same value as the Transaction Identi-
fier in the write command, see sub-clause 6.4.1.9.

NOTE This is so that the initiator of the write command can associate

the reply with the original write command.

6.4.2.9. Header CRC field

The Header CRC field shall contain an 8-bit CRC as defined in sub-clauses 6.2.12 and
6.3.

6.4.2.10. EOP character

The end of the Packet containing the write reply shall be indicated by an EOP charac-
ter.

6.4.3. Write action

6.4.3.1. Overview

The normal sequence of actions for a write command is illustrated in Figure 6-3.

ECSS-E-50-11A

Draft 0.8, 26 May 2008

36

1. Write Request

3. Write Data

Request

2. Write

Command

8. Write

Reply

9. Write Command

Complete Confirmation

Initiator Target

4. Write Data

Authorisation

5. Write Data

7. Write Data

Indication

6. Write OK

Figure 6-3 Write Command/Reply Sequence

6.4.3.2. Write request

a. The write command sequence shall begin when an initiator user application requests to per-

form a write operation (Write Request).

b. The initiator user application shall pass the following information to the initiator:

1. Target SpaceWire Address

2. Target Logical Address

3. Write command options

4. Key

5. Reply Address (if needed)

6. Initiator Logical Address

7. Transaction Identifier

8. Extended Address

9. Memory address

10. Data Length

11. Data

6.4.3.3. Write command

In response to the write request the initiator shall construct the write command includ-
ing the Header CRC and Data CRC and send it across the SpaceWire network to the
target (Write Command).

NOTE The Target SpaceWire Address and Target Logical Address are

used to route the command packet to the target.

6.4.3.4. Write data request

a. When a Packet is received at the target and the Protocol Identifier field is 0x01 the packet

shall be regarded as an RMAP packet.

b. If an EEP or EOP is received before the complete header including header CRC has been re-

ceived:

ECSS-E-50-11A

Draft 0.8, 26 May 2008

37

1. The entire packet shall be discarded

2. The error information should be updated to reflect the “EEP” or “Early EOP” error if the

target supports error information gathering,

3. A reply packet shall not be sent.

c. If an EEP is received immediately after the complete header including header CRC has been

received:

1. The entire packet shall be discarded

2. The error information should be updated to reflect the “EEP” error if the target supports

error information gathering,

3. A reply packet should not be sent.

d. When an RMAP packet is received at the target the Header CRC shall be checked.

e. When checking the Header CRC indicates an error in the header:

1. The entire packet shall be discarded

2. The error information should be updated to reflect the “Header CRC” error if the target

supports error information gathering,

3. A reply packet shall not be sent.

NOTE The sequence of events that occurs when there is a CRC error in

the header of the write command is illustrated in Figure 6-4.

1. Write Request

2. Write

Command

Initiator Target

3. Record

Packet

Error

error

Figure 6-4 Write Command Header Error

f. When checking the Header CRC indicates no error present in the header:

1. If the Instruction field contains an unused packet type (0b10 or 0b11), the target:

(a) Shall discard the command packet,

(b) Should update the error information to reflect the “unused RMAP packet type or

command code” error if the target supports error information gathering,

(c) Shall not send a reply.

(d) May send a reply containing an “unused RMAP packet type or command code” error

as specified in sub-clause 6.7 to the node specified in the Reply Address and Initiator

Logical Address fields, if a reply has been requested (Reply bit set).

2. If the Instruction field contains an invalid command code as specified in Table 6-1, the

target:

(a) Shall discard the command packet,

(b) Should update the error information to reflect the “unused RMAP packet type or

command code” error if the target supports error information gathering,

ECSS-E-50-11A

Draft 0.8, 26 May 2008

38

(c) Shall return an “unused RMAP packet type or command code” error as specified in

sub-clause 6.7 to the node specified in the Reply Address and Initiator Logical Ad-

dress fields, if a reply has been requested (Reply bit set).

3. If the Instruction field contains a write command (packet type 0b01 and a write command

code) the target shall pass the following information to the target user application:

(a) Target Logical Address

(b) Instruction

(c) Key

(d) Initiator Logical Address

(e) Transaction Identifier

(f) Extended Address

(g) Memory address

(h) Data Length

6.4.3.5. Write data authorisation

a. The target user application shall be asked to authorise the write operation.

b. If the value of the Key is not the value expected by the target user application, the target:

1. Shall discard the command packet,

2. Should update the error information to reflect the “invalid key” error if the target supports

error information gathering,

3. Shall return an “invalid key” error as specified in sub-clause 6.7 to the node specified in

the Reply Address and Initiator Logical Address fields if a reply has been requested, Re-

ply bit set (1).

c. If the Target Logical Address is not a logical address recognised by the target user applica-

tion, the target:

1. Shall discard the command packet,

2. Should update the error information to reflect the “invalid Target Logical Address” error

if the target supports error information gathering,

3. Shall return an “invalid Target Logical Address” error as specified in sub-clause 6.7 to the

node specified in the Reply Address and Initiator Logical Address fields if a reply has

been requested, Reply bit set (1).

d. If the command is not accepted by the target user application for any other reason, the target:

1. Shall discard the command packet,

2. Should update the error information to reflect the “RMAP command not implemented or

not authorised” error if the target supports error information gathering,

3. Shall return an “RMAP command not implemented or not authorised” error as specified

in sub-clause 6.7 to the node specified in the Reply Address and Initiator Logical Address

fields if a reply has been requested, Reply bit set (1).

NOTE The target user application can reject the command for any rea-

son it likes. For example the address is not 32-bit aligned, the

Data Length is not a multiple of 4-bytes, or the address range

falls partially or completely outside an acceptable memory ad-

dress region.

NOTE The sequence of events that occurs when a write command is not

authorised is illustrated in Figure 6-5.

ECSS-E-50-11A

Draft 0.8, 26 May 2008

39

1. Write Request

3. Write Data

Request

2. Write

Command

5. Write Reply

Error

6. Authorisation

Failure Indication

4. Write Data

Authorisation

Rejection

Initiator Target

Figure 6-5 Write Data Authorisation Rejection

6.4.3.6. Write data

a. If authorisation is given by the target user application, the data contained in the write com-

mand shall be written into the memory location in the target specified by the Extended Ad-

dress and Address fields (Write Data in Figure 6-3).

b. If the Verify-Data-Before-Write bit is set (1) in the command field of the header:

1. The data shall be buffered and checked using the Data CRC before it is written to mem-

ory.

NOTE The size of the Verify-Data-Before-Write data buffer is imple-

mentation dependent.

2. If the data exceeds the available buffer space, the target:

(a) Shall not write data to memory,

(b) Should update the error information to reflect the “verify buffer overrun” error if the

target supports error information gathering,

(c) Shall return a “verify buffer overrun” error as specified in sub-clause 6.7 to the node

specified in the Reply Address and Initiator Logical Address fields if a reply has been

requested, Reply bit set (1).

3. If the Data CRC is correct and the amount of data matches the value of the data length

field, the data shall be written from the buffer into memory.

4. If the Data CRC is in error the target:

(a) Shall not write data to memory,

(b) Should update the error information to reflect the “invalid Data CRC” error if the tar-

get supports error information gathering,

(c) Shall return an “invalid Data CRC” error as specified in sub-clause 6.7 to the node

specified in the Reply Address and Initiator Logical Address fields if a reply has been

requested, Reply bit set (1).

5. If there is less data in the data field than specified in the Data Length field of the write

command header when the EOP is reached, the target:

(a) Shall not write data into memory,

(b) Should indicate that an insufficient data error has occurred to the user application in

the target,

ECSS-E-50-11A

Draft 0.8, 26 May 2008

40

(c) Should update the error information to reflect the insufficient data error if the target

supports error information gathering,

(d) Shall return an “early EOP” error as specified in sub-clause 6.7 to the node specified

in the Reply Address and Initiator Logical Address fields if a reply has been re-

quested, Reply bit set (1),

6. If there is more data in the data field than specified in the Data Length field of the write

command header, the target:

(a) Shall not write data into memory,

(b) Shall discard the rest of the packet,

(c) Should update the error information to reflect “too much data” error if the target sup-

ports error information gathering,

(d) Shall return a “too much data” error as specified in sub-clause 6.7 to the node speci-

fied in the Reply Address and Initiator Logical Address fields if a reply has been re-

quested, Reply bit set (1).

7. If the packet ends in an EEP, the target:

(a) Shall not write data into memory,

(b) Should indicate that an “EEP” error has occurred to the user application in the target,

(c) Should update the error information to reflect the “EEP” error if the target supports er-

ror information gathering,

(d) Shall return an “EEP” error as specified in sub-clause 6.7 to the node specified in the

Reply Address and Initiator Logical Address fields if a reply has been requested, Re-

ply bit set (1).

c. If the Verify-Data-Before-Write bit is clear (0) in the command field of the header:

1. The data shall be written directly to memory without necessarily buffering and checking

of the Data CRC beforehand.

2. If there is a Data CRC error the target shall:

(a) Update the error information to reflect the “invalid Data CRC” error if the target sup-

ports error information gathering,

(b) Return an “invalid Data CRC” error as specified in sub-clause 6.7 to the node speci-

fied in the Reply Address and Initiator Logical Address fields if a reply has been re-

quested, Reply bit set (1).

NOTE If verify before write bit is clear (0) then the Data CRC error is

reported after the data has been transferred to target memory.

NOTE The sequence of events that occurs when the Data CRC detects

an error in the data field is illustrated in Figure 6-6.

ECSS-E-50-11A

Draft 0.8, 26 May 2008

41

1. Write Request

7. Write Data

Error Indication

2. Write

Command

Header

8. Write Data

Error Reply

9. Write Data

Failure

6. Record

Data Error

3. Write Data

Request

4. Write Data

Authorisation

5. Write

Command

Data

error

Initiator Target

Figure 6-6 Write Command Data Error

3. If there is less data in the data field than specified in the Data Length field of the write

command header when the EOP is reached, the target:

(a) Shall stop transferring into target memory,

(b) Should indicate that an “insufficient data” error has occurred to the user application in

the target,

(c) Should update the error information to reflect the “insufficient data” error if the target

supports error information gathering,

(d) Shall return an “early EOP” error as specified in sub-clause 6.7 to the node specified

in the Reply Address and Initiator Logical Address fields if a reply has been re-

quested, Reply bit set (1),

NOTE If there is a Data CRC in the packet prior to the EOP then it can

be incorrectly transferred into memory at the end of the data.

4. If there is more data in the data field than specified in the Data Length field of the write

command header, the target:

(a) Shall transfer the amount of data specified by the Data Length field of the write com-

mand header to memory,

(b) Shall discard the rest of the packet,

(c) Should update the error information to reflect “too much data” error if the target sup-

ports error information gathering,

(d) Shall return a “too much data” error as specified in sub-clause 6.7 to the node speci-

fied in the Reply Address and Initiator Logical Address fields if a reply has been re-

quested, Reply bit set (1).

5. If the packet ends in an EEP, the target:

(a) Shall stop transferring data into target memory,

(b) Should indicate that an EEP error has occurred to the user application in the target,

(c) Should update the error information to reflect the “EEP” error if the target supports er-

ror information gathering,

(d) Shall return an “EEP” error as specified in sub-clause 6.7 to the node specified in the

Reply Address and Initiator Logical Address fields if a reply has been requested, Re-

ply bit set (1).

ECSS-E-50-11A

Draft 0.8, 26 May 2008

42

d. If the Increment bit is clear (0) in the command field of the header, the memory address writ-

ten to in the target shall remain constant i.e. all data in the write command is written to the

same memory location.

e. If the Increment bit is set (1) in the command field of the header, the memory address written

to in the target shall be incremented as determined by the target user application in order to

access sequential memory locations i.e. the data in the write command is written to sequential

memory locations.

NOTE The width of the memory locations is determined by the target

user application. Byte addressing is not necessarily implied.

6.4.3.7. Write data indication

a. Once data has been written to memory the target user application should be informed that a

write operation has taken place (Write Data Indication).

b. If data is not written to memory after authorisation has been given for the write to memory,

the target user application should be informed that an error occurred.

6.4.3.8. Write reply

a. If the Reply bit in the command field is set (1) requesting a reply and the write command was

executed successfully, the target shall send a reply packet with the status field set to 0x00 in-

dicating that there was no error to the node specified by the Reply Address and Initiator

Logical Address fields of the write command (Write Reply).

b. If the Reply bit in the command field is clear (0), the target shall not send a reply.

6.4.3.9. Write command complete confirmation

a. When the write reply is received at the initiator (or other node specified by the Reply Address

and Initiator Logical Address), successful completion of the write request or its failure shall

be indicated to the user application on that node (Write Complete Confirmation).

b. The Transaction Identifier shall be used to relate the reply to the command that caused the

reply.

6.4.3.10. Write not OK

If the write operation to memory fails, the target:

a. Should stop writing to memory as soon as the memory error is detected,

b. Should update the error information to reflect the memory access error if the target supports

error information gathering,

c. Shall return a “General” error as specified in sub-clause 6.7 to the node specified in the Reply

Address field and Initiator Logical Address fields if a reply has been requested, Reply bit set

(1).

NOTE This is a functional change to draft F to cope with the case when

RMAP is connected to a memory bus where transactions can fail

for any reason.

6.4.3.11. Corrupted write reply

If the write reply is corrupted or does not reach the initiator (or other node specified by
the Reply Address) intact the initiator:

a. Shall discard the reply,

b. Should update the error information to reflect the invalid reply error, if the initiator or other

node receiving the invalid reply supports error information gathering,

c. Should indicate an error to the user application in the node receiving the reply.

NOTE The sequence of events that occurs when a write reply error oc-

curs is illustrated in Figure 6-7.

ECSS-E-50-11A

Draft 0.8, 26 May 2008

43

1. Write Request
2. Write

Command

8. Write

Reply

error
9. Record

Packet Error

3. Write Data

Request

4. Write Data

Authorisation

5. Write Data

7. Write Data

Indication

Initiator Target

6. Write OK

Figure 6-7 Write Reply Error

NOTE The data has been written into target memory and the target user

application has been informed. The initiator application is in-

formed when a write reply is received. It is not informed when

no reply is received.

6.4.3.12. Invalid reply

When a reply is received by the initiator (or other node specified by the Reply Address)
with the reserved bit in the instruction field set (1) or with the command/reply bit clear
(0), the initiator:

a. Shall discard the reply,

b. Should update the error information to reflect the invalid reply error, if the initiator or other

node receiving the invalid reply supports error information gathering.

6.5. Read Command

6.5.1. Read command format

6.5.1.1. Fields

The read command shall contain the fields shown in Figure 6-8.

ECSS-E-50-11A

Draft 0.8, 26 May 2008

44

Target SpW Address

Address (MS) Address Address Address (LS)

Data Length (MS) Data Length Data Length (LS) Header CRC

.... Target SpW Address

EOP

First byte transmitted

Last byte transmitted

Target Logical Address Protocol Identifier Instruction Key

Reply Address Reply Address Reply Address Reply Address

Initiator Logical Address Transaction Identifier (MS) Transaction Identifier (LS) Extended Address

Read = 0 Verify data = 0Command = 1
Increment (1) /

No inc (0)
Reply = 1Reserved = 0

Bits in Instruction Field

MSB

Packet Type Command

Reply Address Length

LSB

Reply Address Length

Reply Address Reply Address Reply Address Reply Address

Reply Address Reply Address Reply Address Reply Address

Figure 6-8 Read Command Format

6.5.1.2. Target SpaceWire Address field

The Target SpaceWire Address field shall be as defined in sub-clause 6.2.1.

6.5.1.3. Target Logical Address field

The Target Logical Address field shall be as defined in sub-clause 6.2.2.

6.5.1.4. Protocol Identifier field

The Protocol Identifier field shall be as defined in sub-clause 6.2.3.

6.5.1.5. Instruction field

6.5.1.5.1. Instruction field format

The Instruction field format shall be as defined in sub-clause 6.2.4.

6.5.1.5.2. Packet type field

The Packet Type field shall be 0b01 to indicate that this is a command.

6.5.1.5.3. Command field

a. The Write/Read bit shall be clear (0) for a read command.

b. The Verify-Data-Before-Write bit shall be clear (0) for a read command.

c. The Reply bit shall be set (1) for a read command.

d. The Increment/No increment Address bit shall be:

1. Set (1) if data is read from sequential memory addresses.

2. Clear (0) if data is read from a single memory address.

6.5.1.5.4. Reply Address length field

The Reply Address Length field shall be set to the smallest number of 32-bit words that
is able to contain the Reply SpaceWire Address from the target, back to the initiator of
the command packet or some other node that is to receive the reply.

ECSS-E-50-11A

Draft 0.8, 26 May 2008

45

EXAMPLE If six Reply SpaceWire Address bytes are used then

the Reply Address Path Length field is set to two

(0b10).

6.5.1.6. Key field

The Key field shall be as defined in sub-clause 6.2.5.

6.5.1.7. Reply Address field

The Reply Address field shall be as defined in sub-clause 6.2.6.

6.5.1.8. Initiator Logical Address field

The Initiator Logical Address field shall be as defined in sub-clause 6.2.7.

6.5.1.9. Transaction Identifier field

The Transaction Identifier field format shall be as defined in sub-clause 6.2.8.

6.5.1.10. Extended Address field

a. The Extended Address field shall be as defined in sub-clause 6.2.9.

b. The Extended Address field shall hold the most-significant 8-bits of the starting memory ad-

dress to be read from.

6.5.1.11. Address field

a. The Address field format shall be as defined in sub-clause 6.2.10.

b. The Address field shall hold the least-significant 32-bits of the starting memory address from

which data is read.

6.5.1.12. Data Length field

The Data Length field format shall be as defined in sub-clause 6.2.11.

NOTE This gives a maximum Data Length of 16 Megabytes - 1 in a

single read command. If a single byte is being read this field is

set to one. If set to zero then no bytes are read from memory

which can be used as a test transaction depending upon the im-

plementation.

6.5.1.13. Header CRC

The Header CRC field shall contain an 8-bit CRC as defined in sub-clauses 6.2.12 and
6.3.

6.5.1.14. EOP character

The end of the Packet containing the read command shall be indicated by an EOP
character.

6.5.2. Read reply format

6.5.2.1. General

The read reply shall contain either:

1. the data that was read from the target, or

2. an error code indicating why data was not read, or

3. both data and an error code.

ECSS-E-50-11A

Draft 0.8, 26 May 2008

46

6.5.2.2. Format

The format of the reply to a read command shall be as in Figure 6-9.

Reply SpW Address

Initiator Logical Address Protocol Identifier Instruction Status

Target Logical Address Transaction Identifier (MS) Transaction Identifier (LS) Reserved = 0

Data Length (MS) Data Length Data Length (LS) Header CRC

Data Data Data Data

.... Reply SpW Address

Data Data

Data Data CRC EOP

First byte transmitted

Last byte transmitted

Read = 0 Verify Data = 0Reply= 0
Increment (1) /

No inc (0)
Reply = 1Reserved = 0

Bits in Instruction Field

MSB

Packet Type Command

Reply Address Length

LSB

Reply Address Length

Figure 6-9 Read Reply Format

6.5.2.3. Reply SpW Address

a. The Reply SpaceWire Address field shall comprise zero or more data characters which define

how the reply is routed to the initiator or some other node.

b. The SpaceWire address in the Reply SpaceWire Address field shall be constructed from the

Reply Address field in the command as detailed in sub-clause 6.2.6.

6.5.2.4. Initiator Logical Address field

The Initiator Logical Address field shall be as defined in sub-clause 6.2.7.

6.5.2.5. Protocol Identifier field

The Protocol Identifier field shall be as defined in sub-clause 6.2.3.

6.5.2.6. Instruction field

a. The Instruction field format shall be as defined in sub-clause 6.2.4.

b. The Packet Type field shall be 0b00 to indicate that RMAP packet is a reply.

c. The Command field shall be set to the same value as in the Command field of the read com-

mand, sub-clause 6.5.1.5.3.

d. The Reply Address Length field shall be set to the same value as in the Reply Address

Length field of the read command, sub-clause 6.5.1.5.4.

6.5.2.7. Status field

a. The Status field format shall be as defined in sub-clause 6.2.17.

b. The Status field shall contain:

1. 0x00 if the command executed successfully

2. A non-zero error code if there was an error with the read command as specified in sub-

clause 6.7.

6.5.2.8. Target Logical Address field

The Target Logical Address field shall be set to either of:

ECSS-E-50-11A

Draft 0.8, 26 May 2008

47

a. The value of the Target Logical Address field of the read command, see sub-clause 6.4.1.3,

or

b. A logical address of the target.

NOTE Normally these are the same.

6.5.2.9. Transaction Identifier field

The Transaction Identifier field shall be set to the same value as the Transaction Identi-
fier of the read command, see sub-clause 6.5.1.9.

NOTE This is so that the initiator of the read command can associate the

reply and data in the reply with the original read command when

the reply is sent to the initiator.

6.5.2.10. Data Length field

The Data Length field format shall be as defined in sub-clause 6.2.11.

6.5.2.11. Header CRC field

The Header CRC field shall contain a CRC as defined in sub-clauses 6.2.12 and 6.3.

6.5.2.12. Data field

a. The Data field shall contain the data that has been read from the memory of the target as de-

fined in sub-clause 6.2.13.

b. The number of data bytes in the reply may be a different value from that indicated in the Data

Length field in the command and reply, if fewer bytes are returned than requested.

6.5.2.13. Data CRC field

The Data CRC shall contain an 8-bit CRC as defined in sub-clauses 6.2.15 and 6.3.

6.5.2.14. EOP character

The end of the Packet containing the read reply shall be indicated by an EOP charac-
ter.

6.5.3. Read action

6.5.3.1. Overview

The normal sequence of actions for a read command is illustrated in Figure 6-10.

ECSS-E-50-11A

Draft 0.8, 26 May 2008

48

1. Read Request

3. Read Data

Request

2. Read

Command

8. Read

Reply

9. Read Data

Confirmation

5. Read Data

4. Read Data

Authorisation

7. Read Data

Indication

Initiator Target

6. Read Data OK

Figure 6-10 Read Command/Reply Sequence

6.5.3.2. Read Request

a. The read command sequence shall begin when an initiator user application requests to per-

form a read operation (Read Request).

b. The initiator user application shall pass the following information to the initiator:

1. Target SpaceWire Address

2. Target Logical Address

3. Read command options

4. Key

5. Reply Address

6. Initiator Logical Address

7. Transaction Identifier

8. Extended Address

9. Memory address

10. Data Length

6.5.3.3. Read command

In response to the read request the initiator shall construct the read command including
the Header CRC and send it across the SpaceWire network to the target (Read Com-
mand).

NOTE The Target SpaceWire Address and Target Logical Address are

used to route the command packet to the target.

6.5.3.4. Read data request

a. When a Packet is received at the target and the Protocol Identifier field is 0x01 the packet

shall be regarded as an RMAP packet.

b. If an EEP or EOP is received before the complete header including header CRC has been re-

ceived:

ECSS-E-50-11A

Draft 0.8, 26 May 2008

49

1. The entire packet shall be discarded,

2. The error information should be updated to reflect the “EEP” or “Early EOP” error if the

target supports error information gathering,

3. A reply packet shall not be sent.

c. If an EEP is received immediately after the complete header including header CRC has been

received:

1. The entire packet shall be discarded,

2. The error information should be updated to reflect the “EEP” error if the target supports

error information gathering,

3. A reply packet should not be sent.

d. When an RMAP packet is received at the target the Header CRC shall be checked.

e. When checking the Header CRC indicates an error in the header:

1. The entire packet shall be discarded,

2. The error information shall be updated to reflect the “Header CRC” error if the target

supports error information gathering,

3. A reply packet shall not be sent.

NOTE The sequence of events that occurs when there is a CRC error in

the header of the read command is illustrated in Figure 6-11.

1. Read Request
2. Read

Command

error
3. Record

Packet Error

Initiator Target

Figure 6-11 Read Command Header Error

f. When checking the Header CRC indicates no error present in the header:

1. If the Instruction field contains an unused packet type (0b10 or 0b11) the target:

(a) Shall discard the command packet

(b) Should update the error information to reflect the “unused RMAP packet type of

command code” error if the target supports error information gathering,

(c) Shall not send a reply.

(d) May send a reply containing an “unused RMAP packet type or command code” error

as specified in sub-clause 6.7 to the node specified in the Reply Address and Initiator

Logical Address fields.

2. If the Instruction field contains an invalid command code as specified in Table 6-1, the

target:

(a) Shall discard the command packet,

(b) Should update the error information to reflect the “unused RMAP packet type or

command code” error if the target supports error information gathering,

ECSS-E-50-11A

Draft 0.8, 26 May 2008

50

(c) Shall return an “unused RMAP packet type or command code” error as specified in

sub-clause 6.7 to the node specified in the Reply Address and Initiator Logical Ad-

dress fields, if a reply has been requested (Reply bit set).

3. If the Instruction field contains a read command (packet type 0b01 and a read command

code) and if one or more data characters are received immediately after the complete

header including header CRC the target:

(a) Shall discard the remainder of the packet,

(b) Shall not execute the read command,

(c) Should update the error information to reflect the “too much data” error if the target

supports error information gathering,

(d) Shall return a “too much data” error as specified in sub-clause 6.7 to the node speci-

fied in the Reply Address and Initiator Logical Address fields.

4. If the Instruction field contains a read command (packet type 0b01 and a read command

code) the target shall pass the following information to the target user application:

(a) Target Logical Address

(b) Instruction

(c) Key

(d) Initiator Logical Address

(e) Transaction Identifier

(f) Extended Address

(g) Memory address

(h) Data Length

6.5.3.5. Read data authorisation

a. The target user application shall be asked to authorise the read operation.

b. If the value of the Key is not the value expected by the target user application, the target:

1. Shall discard the command packet

2. Should update the error information to reflect the “invalid key” error if the target supports

error information gathering,

3. Shall return an “invalid key” error as specified in sub-clause 6.7 to the node specified in

the Reply Address and Initiator Logical Address fields if a reply has been requested, Re-

ply bit set (1).

c. If the Target Logical Address is not a logical address recognised by the target user applica-

tion, the target:

1. Shall discard the command packet

2. Should update the error information to reflect the “invalid Target Logical Address” error

if the target supports error information gathering,

3. Shall return an “invalid Target Logical Address” error as specified in sub-clause 6.7 to the

node specified in the Reply Address and Initiator Logical Address fields.

d. If the command is not accepted by the target user application for any other reason, the target:

1. Shall discard the command packet

2. Should update the error information to reflect the “RMAP command not implemented or

not authorised” error if the target supports error information gathering,

3. Shall return an “RMAP command not implemented or not authorised” error as specified

in sub-clause 6.7 to the node specified in the Reply Address and Initiator Logical Address

fields.

ECSS-E-50-11A

Draft 0.8, 26 May 2008

51

NOTE The target user application can reject the command for any rea-

son it likes. For example the address is not 32-bit aligned, the

Data Length is not a multiple of 4-bytes, or the address range

falls partially or completely outside an acceptable memory ad-

dress region.

NOTE The sequence of events that occurs when a read command is not

authorised is illustrated in Figure 6-12.

1. Read Request

3. Read Data

Request

2. Read

Command

5. Read

Reply

Authorisation

Error

6. Authorisation

Failure

4. Read

Authorisation

Rejection

Initiator Target

Figure 6-12 Read Authorisation Rejection

6.5.3.6. Read data

a. If authorisation is given by the target user application, data shall be read from the memory

location in the target specified by the Extended Address and Address fields (Read Data).

b. If the Increment bit is clear (0) in the command field of the header, the memory address read

from in the target shall remain constant i.e. all data is read from the same memory location.

c. If the Increment bit is set (1) in the command field of the header, the memory address read in

the target shall be incremented as determined by the target user application in order to access

sequential memory locations i.e. the data is read from sequential memory locations.

NOTE The width of the memory locations is determined by the target

user application. Byte addressing is not necessarily implied.

6.5.3.7. Read data indication

a. Once data has been read from memory the target user application should be informed that a

read operation has taken place (Read Data Indication).

b. If data is not read from memory after authorisation has been given for the read from memory,

the target user application shall be informed that an error occurred.

6.5.3.8. Read reply

a. If the read command was executed successfully, the target shall send a reply packet to the

node specified by the Reply Address and Initiator Logical Address fields of the read com-

mand (Read Reply).

b. The reply to a successful read command shall have:

1. The status field set to 0x00 indicting that there was no error

2. The Data Length field set to the amount of data read in bytes

3. The data field filled with the data read from the target memory.

6.5.3.9. Read data confirmation

ECSS-E-50-11A

Draft 0.8, 26 May 2008

52

a. When the read reply is received at the initiator (or other node specified by the Reply Ad-

dress), successful completion of the read request shall be indicated to the user application on

that node (Read Data Confirmation).

b. The Transaction Identifier shall be used to relate the reply to the command that caused the

reply.

NOTE It is the responsibility of the initiator user application to read the

data in the read reply once it has been informed that the data has

been received.

6.5.3.10. Read not OK

If the read memory operation memory fails, the target:

a. Should stop reading from memory as soon as the memory error is detected,

b. Should update the error information to reflect the memory access error if the target supports

error information gathering,

c. Shall either:

1. Append an EEP to the end of the data already sent in the reply to the initiator, or

2. Append an appropriate data CRC byte covering the data already sent in the reply to the

initiator, followed by an EOP.

6.5.3.11. Read reply header error

If the reply from the read command arrives at the initiator (or other node specified by
the Reply Address) with a Header CRC error, packet type error, or other error in the
header, the receiving node:

a. Shall discard the entire packet containing the corrupted read reply,

b. Should update the error information to reflect the “Packet Error” error if the initiator (or other

node receiving the reply) supports error information gathering.

NOTE The response to an error in the header of a read reply is illus-

trated in Figure 6-13.

1. Read Request

2. Read

Command

8. Read

Reply

error
9. Record

Packet

Error

3. Read Data

Request

6. Read Data OK

4. Read Data

Authorisation

7. Read Data

Indication

Initiator Target

5. Read Data

Figure 6-13 Read Reply Header Error

6.5.3.12. Read reply data error

ECSS-E-50-11A

Draft 0.8, 26 May 2008

53

If the header of the read reply packet is received intact by the initiator (or other node
specified by the Reply Address) but the data field is corrupted as indicated by an incor-
rect data field length (too long or too short) or by a Data CRC error, the initiator:

a. Shall discard the reply,

b. Should update the error information to reflect the “invalid reply” error, if the initiator or other

node receiving the invalid reply supports error information gathering,

c. Should indicate an error to the user application in the node receiving the reply (Read Data

Failure).

NOTE The response to an error in the data field of a read reply is illus-

trated in Figure 6-14.

9. Read Data

Failure

1. Read Request

2. Read

Command

8. Read

Reply

error

3. Read Data

Request

6. Read Data OK

4. Read Data

Authorisation

7. Read Data

Indication

Initiator Target

5. Read Data

Figure 6-14 Read Reply Data Error

6.5.3.13. Invalid reply

When a reply is received by the initiator (or other node specified by the Reply Address)
with the reserved bit in the instruction field set (1) or with the command/reply bit clear
(0), the initiator:

a. Shall discard the reply,

b. Should update the error information to reflect the “invalid reply” error, if the initiator or other

node receiving the invalid reply supports error information gathering.

6.6. Read-Modify-Write Command

6.6.1. Read-modify-write command format

6.6.1.1. Fields

The read-modify-write command shall contain the fields shown in Figure 6-15.

ECSS-E-50-11A

Draft 0.8, 26 May 2008

54

Target SpW Address

Target Logical Address Protocol Identifier Instruction Key

Initiator Logical Address Transaction Identifier (MS) Transaction Identifier (LS) Extended Address

Address (MS) Address Address Address (LS)

Data Length (MS) = 0x00 Data Length = 0x00
Data Length (LS) =

0x00, 0x02, 0x04, 0x06 or 0x08
Header CRC

Data (MS) Data Data Data (LS)

.... Target SpW Address

Data CRC EOP

First byte transmitted

Last byte transmitted

Write/Read = 0 Verify Data = 1Command = 1 Increment = 1Reply = 1Reserved = 0

Bits in Instruction Field

MSB

Packet Type Command

Mask (MS) Mask Mask Mask (LS)

Reply

Address Length

LSB

Reply Address Length

Reply Address Reply Address Reply Address Reply Address

Reply Address Reply Address Reply Address Reply Address

Reply Address Reply Address Reply Address Reply Address

Figure 6-15 Read-Modify-Write Command Format

6.6.1.2. Target SpaceWire Address field

The Target SpaceWire Address field shall be as defined in sub-clause 6.2.1.

6.6.1.3. Target Logical Address field

The Target Logical Address field shall be as defined in sub-clause 6.2.2

6.6.1.4. Protocol Identifier field

The Protocol Identifier field shall be as defined in sub-clause 6.2.3.

6.6.1.5. Instruction field

6.6.1.5.1. Instruction field format

The Instruction field format shall be as defined in sub-clause 6.2.4.

6.6.1.5.2. Packet type field

The Packet Type field shall be 0b01 to indicate that this is a command.

6.6.1.5.3. Command field

a. The Write/Read bit shall be clear (0) for a read-modify-write command.

b. The Verify-Data-Before-Write bit shall be set (1) for a read-modify-write command .

NOTE This is so that the data is verified before it is written to memory

and also distinguishes a read-modify-write from a read com-

mand.

c. The Reply bit shall be set (1) for a read-modify-write command.

NOTE The reply contains the data initially read from the memory in the

target.

d. The “Increment / No Increment Address” bit shall be set (1) for a read-modify-write com-

mand.

ECSS-E-50-11A

Draft 0.8, 26 May 2008

55

NOTE This means that when read-modify-write is to be applied to more

than one byte, the address is incremented if byte wide memory is

being used. Note that the width of the memory word is deter-

mined by the target unit and can be any multiple of 8-bits.

6.6.1.5.4. Reply Address length field

The Reply Address Length field shall be set to the smallest number of 32-bit words that
is able to contain the Reply SpaceWire Address from the target, back to the initiator of
the command packet or some other node that is to receive the reply.

EXAMPLE If ten path Reply SpaceWire Address bytes are used

then the Reply Address Length field is set to three

(0b11).

6.6.1.6. Key field

The Key field shall be as defined in sub-clause 6.2.5.

6.6.1.7. Reply Address field

The Reply Address field shall be as defined in sub-clause 6.2.6.

6.6.1.8. Initiator Logical Address field

The Initiator Logical Address field shall be as defined in sub-clause 6.2.7

6.6.1.9. Transaction Identifier field

The Transaction Identifier field format shall be as defined in sub-clause 6.2.8.

6.6.1.10. Extended Address field

a. The Extended Address field shall be as defined in sub-clause 6.2.9.

b. The Extended Address field shall hold the most-significant 8-bits of the starting memory ad-

dress to be read from.

6.6.1.11. Address field

a. The Address field format shall be as defined in sub-clause 6.2.10.

b. The Address field shall hold the least-significant 32-bits of the memory address to which the

data in a read-modify-write command is read from and written to.

6.6.1.12. Data Length field

a. The Data Length field format shall be as defined in sub-clause 6.2.11.

b. The Data Length field shall contain the overall length, in bytes, of the data and mask fields

i.e. the length of the data field plus the length of the mask field.

c. In a read-modify-write command the Data Length shall specify the size of the data field plus

the size of the mask field sent in the command, which is twice the amount of data read and

written.

EXAMPLE If a 2-byte word is written, then the Data Length is

0x04. There are two data bytes and two mask bytes in

the command. Two bytes are read from memory and

returned to the initiator. Two bytes are written com-

bining the read data, the data from the command and

the mask.

d. The Data Length shall only take on values of 0x00, 0x02, 0x04, 0x06 or 0x08, which corre-

spond to the reading, modifying and writing of 0, 1, 2, 3, or 4 bytes of data respectively.

6.6.1.13. Header CRC field

ECSS-E-50-11A

Draft 0.8, 26 May 2008

56

The Header CRC field shall contain an 8-bit CRC as defined in sub-clauses 6.2.12 and
6.3.

6.6.1.14. Data field

a. The Data field shall contain the data that is combined with the mask and the data read from

memory before the result is written into the memory of the target as defined in sub-clause

6.2.13.

b. The set of 0, 1, 2, 3 or 4 data bytes shall precede the corresponding set of 0, 1, 2, 3, or 4 mask

bytes.

6.6.1.15. Mask field

The Mask field shall be used by the target application to define how the data written to
memory is formed.

NOTE The way the read data and mask are combined is application de-

pendent.

EXAMPLE Data written can be selected on a bit by bit basis from

the data sent in the command when the corresponding

mask bit is set (1) or from the data read in the reply

when the mask bit is clear (0).

Written Data = (Mask AND Command_Data) OR (NOT

Mask AND Read_Data).

This example is illustrated in Figure 6-16. The target

user application can implement different schemes for

example test and set.

1 0 0 0 1 0 0 0

1 0 0 0 1 1 1 0

1 1 1 0 0 0 1 1

Data in command (Data)

Mask in command (Mask)

Data read from destination memory and returned to source (Read)

1 1 1 0 1 0 0 1 Data written to destination memory

= (Mask AND Data) OR (NOT Mask AND Read)

Figure 6-16 Example Operation of Read-Modify-Write Command

6.6.1.16. Data CRC field

a. The Data CRC shall contain an 8-bit CRC as defined in sub-clauses 6.2.15 and 6.3.

b. The Data CRC shall cover both the data and the mask fields.

6.6.1.17. EOP character

The end of the Packet containing the read-modify-write command shall be indicated by
an EOP character.

6.6.2. Read-modify-write reply format

6.6.2.1. General

The read-modify-write reply shall contain either:

ECSS-E-50-11A

Draft 0.8, 26 May 2008

57

1. the data that was read from the target, or

2. an error code indicating why data was not read, or

3. both data and an error code.

6.6.2.2. Format

The format of the reply to a read-modify-write command shall be as in Figure 6-17.

Reply SpW Address

Initiator Logical Address Protocol Identifier Instruction Status

Target Logical Address Transaction Identifier (MS) Transaction Identifier (LS) Reserved = 0

Data Length (MS) = 0 Data Length = 0
Data Length (LS) =

0x00, 0x01, 0x02, 0x03 or 0x04
Header CRC

Data Data Data Data

.... Reply SpW Address

Data CRC EOP

First byte transmitted

Last byte transmitted

Write/Read= 0 Verify Data = 1Reply = 0 Increment = 1Reply = 1Reserved = 0

Bits in Instruction Field

MSB

Packet Type Command

Reply Address Length

LSB

Reply Address Length

Figure 6-17 Read-Modify-Write Reply Format

6.6.2.3. Reply SpaceWire Address

a. The Reply SpaceWire Address field shall comprise zero or more data characters which define

how the reply is routed to the initiator or some other node.

b. The SpaceWire address in the Reply SpaceWire Address field shall be constructed from the

Reply Address field in the command as detailed in sub-clause 6.2.6

6.6.2.4. Initiator Logical Address field

The Initiator Logical Address field shall be as defined in sub-clause 6.2.7.

6.6.2.5. Protocol Identifier field

The Protocol Identifier field shall be as defined in sub-clause 6.2.3.

6.6.2.6. Instruction field

a. The Instruction field format shall be as defined in sub-clause 6.2.4.

b. The Packet Type field shall be 0b00 to indicate that RMAP packet is a reply.

c. The Command field shall be set to the same value as in the Command field of the read-

modify-write command, 6.6.1.5.3.

d. The Reply Address Length field shall be set to the same value as in the Reply Address

Length field of the read-modify-write command, sub-clause 6.6.1.5.3.

6.6.2.7. Status field

a. The Status field format shall be as defined in sub-clause 6.2.17.

b. The Status field shall contain:

1. 0x00 if the command executed successfully

2. A non-zero error code if there was an error with the read-modify-write command as

specified in sub-clause 6.7.

ECSS-E-50-11A

Draft 0.8, 26 May 2008

58

6.6.2.8. Target Logical Address field

The Target Logical Address field shall be set to either of:

a. The value of the Target Logical Address field of the write command, see sub-clause 6.4.1.3,

or

b. A logical address of the target.

NOTE Normally these are the same.

6.6.2.9. Transaction Identifier field

The Transaction Identifier field shall be set to the same value as the Transaction Identifier of the

read-modify-write command, see sub-clause 6.6.1.9.

NOTE This is so that the initiator of the read-modify-write command

can associate the reply and data in the reply with the original

read-modify-write command.

6.6.2.10. Data Length field

a. The Data Length field format shall be as defined in sub-clause 6.2.11.

b. The Data Length field shall contain the length, in bytes, of the data returned in the reply

packet.

c. For a read-modify-write command the Data Length shall be 0, 1, 2, 3 or 4 only

NOTE The Data Length in the reply is a different value to the Data

Length in the command since the Data Length in the command

includes both data and mask.

6.6.2.11. Header CRC field

The Header CRC field shall contain a CRC as defined in sub-clauses 6.2.12 and 6.3.

6.6.2.12. Data field

The Data field shall contain the data that has been read from the memory of the target
as defined in sub-clause 6.2.13.

NOTE The data length field in the reply is different to that in the com-

mand.

6.6.2.13. Data CRC field

The Data CRC shall contain an 8-bit CRC as defined in sub-clauses 6.2.15 and 6.3.

6.6.2.14. EOP character

The end of the Packet containing the read-modify-write reply shall be indicated by an
EOP character.

6.6.3. Read-modify-write action

6.6.3.1. Overview

The normal sequence of actions for a read-modify-write command is illustrated in Figure 6-18.

ECSS-E-50-11A

Draft 0.8, 26 May 2008

59

1. RMW Request

3. RMW Data

Request

2. RMW

Command

10. RMW

Reply

11. RMW Complete

Confirmation

4. Data Read and Write

Authorisation

7. Write Data

9. RMW Indication

5. Read Data

Initiator Target

6. Read Data OK

8. Write Data OK

Figure 6-18 Read-Modify-Write Command/Reply Sequence

6.6.3.2. Read-modify-write request

a. The read-modify-write command sequence shall begin when an initiator user application re-

quests to perform a read-modify-write operation (RMW Request).

b. The initiator user application shall pass the following information to the initiator:

1. Target SpaceWire Address

2. Target Logical Address

3. Read-modify-write command options

4. Key

5. Reply Address

6. Initiator Logical Address

7. Transaction Identifier

8. Extended Address

9. Memory address

10. Data Length

11. Data

12. Mask

6.6.3.3. Read-modify-write command

In response to the read-modify-write request the initiator shall construct the read-
modify-write command including the Header CRC and Data CRC and send it across
the SpaceWire network to the target (RMW Command).

NOTE The Target SpaceWire Address and Target Logical Address are

used to route the command packet to the target.

6.6.3.4. Read-modify-write data request

a. When a Packet is received at the target and the Protocol Identifier field is 0x01 the packet

shall be regarded as an RMAP packet.

ECSS-E-50-11A

Draft 0.8, 26 May 2008

60

b. If an EEP or EOP is received before the complete header including header CRC has been re-

ceived:

1. The entire packet shall be discarded,

2. The error information should be updated to reflect the an “EEP” or “Early EOP” error if

the target supports error information gathering,

3. A reply packet shall not be sent.

c. If an EEP is received immediately after the complete header including header CRC has been

received:

1. The entire packet shall be discarded

2. The error information should be updated to reflect the “EEP” error if the target supports

error information gathering,

3. A reply packet should not be sent.

d. When an RMAP packet is received at the target the Header CRC shall be checked.

e. When the Header CRC indicates an error in the header:

1. The entire packet shall be discarded

2. The error information should be updated to reflect the “Header CRC” error if the target

supports error information gathering,

3. A reply packet shall not be sent.

NOTE The sequence of events that occurs when there is a CRC error in

the header of the read-modify-write command is illustrated in

Figure 6-19.

1. RMW Request

2. RMW

Command

3. Record

Packet

Error

error

Initiator Target

Figure 6-19 Read-Modify-Write Command Header Error

f. When checking the Header CRC indicates no error present in the header:

1. If the Instruction field contains an unused packet type (0b10 or 0b11), the target:

(a) Shall discard the command packet

(b) Should update the error information to reflect the “unused RMAP packet type of

command code” error if the target supports error information gathering,

(c) Shall not send a reply.

(d) May send a reply containing an “unused RMAP packet type or command code” error

as specified in sub-clause 6.7 to the node specified in the Reply Address and Initiator

Logical Address fields.

2. If the Instruction field contains an invalid command code as specified in Table 6-1, the

target:

(a) Shall discard the command packet,

ECSS-E-50-11A

Draft 0.8, 26 May 2008

61

(b) Should update the error information to reflect the “unused RMAP packet type or

command code” error if the target supports error information gathering,

(c) Shall return an “unused RMAP packet type or command code” error as specified in

sub-clause 6.7 to the node specified in the Reply Address and Initiator Logical Ad-

dress fields.

3. The data and mask shall be buffered and checked using the Data CRC before command

authorisation is requested.

4. If the data exceeds the available buffer space, the target:

(a) Shall not read data from and write data to memory,

(b) Should update the error information to reflect the “verify buffer overrun” error if the

target supports error information gathering,

(c) Shall return a “verify buffer overrun” error as specified in sub-clause 6.7 to the node

specified in the Reply Address and Initiator Logical Address fields.

5. If the Data CRC is in error the target:

(a) Shall not read data from and write data to memory,

(b) Should update the error information to reflect the “invalid Data CRC” error if the tar-

get supports error information gathering,

(c) Shall return an “invalid Data CRC” error as specified in sub-clause 6.7 to the node

specified in the Reply Address and Initiator Logical Address fields.

6. If there is less data in the data field than specified in the Data Length field of the read-

modify-write command header when the EOP is reached, the target:

(a) Shall not read data from and write data into memory,

(b) Should indicate that an “insufficient data” error has occurred to the user application in

the target,

(c) Should update the error information to reflect the “insufficient data” error if the target

supports error information gathering,

(d) Shall return an “early EOP” error as specified in sub-clause 6.7 to the node specified

in the Reply Address and Initiator Logical Address fields.

7. If there is more data in the data field than specified in the Data Length field of the read-

modify-write command header, then the target:

(a) Shall not read data from and write data into memory,

(b) Shall discard the rest of the packet,

(c) Should update the error information to reflect “too much data” error if the target sup-

ports error information gathering,

(d) Shall return a “too much data” error as specified in sub-clause 6.7 to the node speci-

fied in the Reply Address and Initiator Logical Address fields.

8. If the value in the Data Length field is incorrect (i.e. is not 0, 2 ,4, 6 or 8), the target:

(a) Shall not read data from and write data into memory,

(b) Should update the error information to reflect “read-modify-write Data Length” error

if the target supports error information gathering,

(c) Shall return a “read-modify-write Data Length” error as specified in sub-clause 6.7 to

the node specified in the Reply Address and Initiator Logical Address fields.

NOTE The sequence of events that occurs when there is an error in the

data field of the read-modify-write command is illustrated in

Figure 6-20.

9. If the packet ends in an EEP, the target:

(a) Shall not write data into memory,

ECSS-E-50-11A

Draft 0.8, 26 May 2008

62

(b) Should indicate that an “EEP” error has occurred to the user application in the target,

(c) Should update the error information to reflect the “EEP” error if the target supports er-

ror information gathering,

(d) Shall return an “EEP” error as specified in sub-clause 6.7 to the node specified in the

Reply Address and Initiator Logical Address fields.

1. RMW Request

5. RMW Data

Error Indication

2. RMW

Command

Header

6. RMW Data

Error Reply

7. RMW Data

Failure

4. Record

Data Error

3. RMW

Command

Data

error

Initiator Target

Figure 6-20 Read-Modify-Write Command Data Error

10. If the instruction field contains a RMW command and the Data CRC is correct and the

amount of data in the data field is correct, the target shall pass the following information

to the target user application for command authorisation:

(a) Target Logical Address

(b) Instruction

(c) Key

(d) Initiator Logical Address

(e) Transaction Identifier

(f) Extended Address

(g) Memory address

(h) Data Length

6.6.3.5. Read-modify-write authorisation

a. The target user application shall be asked to authorise the read-modify-write operation.

b. If the value of the Key is not the value expected by the target user application, the target:

1. Shall discard the command packet

2. Should update the error information to reflect the “invalid key” error if the target supports

error information gathering,

3. Shall return an “invalid key” error as specified in sub-clause 6.7 to the node specified in

the Reply Address and Initiator Logical Address fields.

c. If the Target Logical Address is not a logical address recognised by the target user applica-

tion, the target:

1. Shall discard the command packet

2. Should update the error information to reflect the “invalid Target Logical Address” error

if the target supports error information gathering,

3. Shall return an “invalid Target Logical Address” error as specified in sub-clause 6.7 to the

node specified in the Reply Address and Initiator Logical Address fields.

ECSS-E-50-11A

Draft 0.8, 26 May 2008

63

d. If the command is not accepted by the target user application for any other reason, the target:

1. Shall discard the command packet

2. Should update the error information to reflect the “RMAP command not implemented or

not authorised” error if the target supports error information gathering,

3. Shall return an “RMAP command not implemented or not authorised” error as specified

in sub-clause 6.7 to the node specified in the Reply Address and Initiator Logical Address

fields.

NOTE The target user application can reject the command for any rea-

son it likes.

EXAMPLE If the read operation is acceptable, but the write operation is not

acceptable, due to for instance a write protected memory, then the

command is not authorised by the target user application when the

read-modify-write data request is made.

NOTE The sequence of events that occurs when a read-modify-write

command is not authorised is illustrated in Figure 6-21.

1. RMW Request

3. RMW Data

Request

2. RMW

Command

5.RMW Reply

Error

6. RMW

Failure

4. RMW

Authorisation

Rejection

Initiator Target

Figure 6-21 Read-Modify-Write Authorisation Rejection

6.6.3.6. Read data

a. If the data to be written does not contain any errors and authorisation is given by the target

user application, data shall be read from the memory location in the target specified by the

Extended Address and Address fields (Read Data).

b. The memory address read from in the target shall be incremented as determined by the target

user application in order to access sequential memory locations i.e. the data is read from se-

quential memory locations.

NOTE The width of the memory locations is determined by the target

user application. Byte addressing is not necessarily implied.

6.6.3.7. Write data

a. The data to be written to the memory locations shall be calculated from the data read from

memory and the data and mask fields of the read-modify-write command.

NOTE The way in which the data read from target memory is combined

with the data and mask values in the command is application de-

pendent.

b. The new data shall be written to the memory location(s) that was previously read.

6.6.3.8. Read-modify write data indication

a. Once data has been read and written to memory the user application running on the target

should be informed that a read-modify-write operation has taken place (RMW Indication).

ECSS-E-50-11A

Draft 0.8, 26 May 2008

64

b. If data is not written to memory after authorisation has been given for the read-modify-write

to memory, the target user application should be informed that an error occurred.

6.6.3.9. Read-modify-write reply

a. If the read-modify-write command was executed successfully, the target shall send a reply

packet to the node specified by the Reply Address and Initiator Logical Address fields of the

read command (RMW Reply).

b. The reply to a successful read-modify-write command shall have:

1. The status field set to 0x00 indicting that there was no error

2. The Data Length field set to the amount of data read in bytes

3. The data field filled with the data read from the target memory.

6.6.3.10. Read-modify-write complete confirmation

a. When the read-modify-write reply is received at the initiator (or other node specified by the

Reply Address), successful completion of the read-modify-write request shall be indicated to

the user application on that node (RMW Complete Confirmation).

b. The Transaction Identifier shall be used to relate the reply to the command that caused the

reply.

NOTE It is the responsibility of the initiator user application to read the

data in the read reply once it has been informed that the data has

been received.

6.6.3.11. Read and Write not OK

If the read or write operations to memory fails, the target:

a. Should stop reading to or writing from memory as soon as the memory error is detected,

b. Should update the error information to reflect the “memory access” error if the target sup-

ports error information gathering,

c. Shall either:

1. Append an EEP to the end of the data sent in the reply to the initiator, or

2. Append an appropriate data CRC byte covering the data sent in the reply to the initiator,

followed by an EOP.

NOTE In this case the data length field in the reply will contain the

amount of data requested which will be different to the amount

of data returned in the data field of the reply.

6.6.3.12. Read-modify-write reply header error

If the reply from the read-modify-write command arrives at the initiator (or other node)
with a Header CRC error, packet type error, or other error in the header, the receiving
node shall:

a. Shall discard the entire packet containing the corrupted read-modify-write reply,

b. Should update the error information to reflect the “Packet Error” error if the initiator (or other

node receiving the reply) supports error information gathering.

NOTE The response to an error in the header of a read-modify-write re-

ply is illustrated in Figure 6-22. The data has been correctly read

from target memory, modified using the mask information and

the result written back into memory. The target application has

been informed. The read-modify-write reply that is sent back to

the initiator is corrupted.

ECSS-E-50-11A

Draft 0.8, 26 May 2008

65

10. RMW

Reply

error
11. Record

Packet

Error

1. RMW Request

2. RMW

Command

Initiator Target

3. RMW Data

Request

4. Data Read and Write

Authorisation

7. Write Data

9. Write Data

Indication

5. Read Data

6. Read Data OK

8. Read Data OK

Figure 6-22 Read-Modify-Write Reply Error

6.6.3.13. Read-modify-write reply data error

If the header of the read-modify-write reply packet is received intact by the initiator (or
other node specified by the Reply Address) but the data field is corrupted as indicated
by an incorrect data field length (too long or too short) or by a Data CRC error, the ini-
tiator:

a. Shall discard the reply,

b. Should update the error information to reflect the “invalid reply” error, if the initiator or other

node receiving the invalid reply supports error information gathering,

c. Should indicate an error to the user application in the node receiving the reply (Read-Modify-

Write Data Failure).

NOTE The response to an error in the data field of a read reply is illus-

trated in Figure 6-23.

10. RMW

Reply

error

1. RMW Request

2. RMW

Command

11. RMW Data

Failure

Initiator Target

3. RMW Data

Request

4. Data Read and Write

Authorisation

7. Write Data

9. Write Data

Indication

5. Read Data

6. Read Data OK

8. Read Data OK

ECSS-E-50-11A

Draft 0.8, 26 May 2008

66

Figure 6-23 RMW Reply Data Error

6.6.3.14. Invalid reply

When a reply is received by the initiator (or other node specified by the Reply Address)
with the reserved bit in the instruction field set (1) or with the command/reply bit clear
(0), the initiator:

a. Shall discard the reply,

b. Should update the error information to reflect the “invalid reply” error, if the initiator or other

node receiving the invalid reply supports error information gathering.

6.7. Error and status codes

6.7.1. Error and status codes

a. The set of error and status codes that shall be used are listed in Table 6-4.

b. If a command executes successfully, then the Error Code 0 shall be used in the Status field of

any reply.

c. If there is an error with the command, then a suitable error code as defined in Table 6-4 shall

be used in the Status field of any reply.

ECSS-E-50-11A

Draft 0.8, 26 May 2008

67

Table 6-4 Error and Status Codes

Error

Code

Error Error Description Applicability

Write Read RMW

0 Command exe-

cuted successfully

 X X X

1 General error

code

The detected error does not fit into the other

error cases or the node does not support fur-

ther distinction between the errors

X X X

2 Unused RMAP

Packet Type or

Command Code

The Header CRC was decoded correctly but

the packet type is reserved or the command

is not used by the RMAP protocol.

X X X

3 Invalid key The Header CRC was decoded correctly but

the device key did not match that expected

by the target user application.

X X X

4 Invalid Data CRC Error in the CRC of the data field X X

5 Early EOP EOP marker detected before the end of the

data.

X X X

6 Too much data More than the expected amount of data in a

command has been received.

X X X

7 EEP EEP marker detected immediately after the

header CRC or during the transfer of data

and Data CRC or immediately thereafter.

Indicates that there was a communication

failure of some sort on the network.

X X X

8 Reserved Reserved

9 Verify buffer

overrun

The verify before write bit of the command

was set so that the data field was buffered in

order to verify the Data CRC before trans-

ferring the data to target memory. The data

field was longer than able to fit inside the

verify buffer resulting in a buffer overrun.

Note that the command is not executed in

this case.

X X

10 RMAP Command

not implemented

or not authorised

The target user application did not authorise

the requested operation. This may be be-

cause the command requested has not been

implemented.

X X X

11 RMW Data

Length error

The amount of data in a RMW command is

invalid (0x01, 0x03, 0x05, 0x07 or greater

than 0x08).

 X

12 Invalid Target

Logical Address

The Header CRC was decoded correctly but

the Target Logical Address was not the

value expected by the target.

X X X

13-

255

Reserved All unused error codes are reserved

d. When one or more errors arise that mean more than one error code is applicable it shall be

application dependent as to which of the relevant error codes is sent.

ECSS-E-50-11A

Draft 0.8, 26 May 2008

68

e. The specific error returned may vary depending on the specific application.

6.8. Partial Implementations of RMAP

6.8.1. Limited functionality nodes

6.8.1.1. Types of RMAP node

It shall be possible to implement nodes which are:

1. Initiators,

2. Targets, or

3. Both initiators and targets.

6.8.1.2. Initiator only node

a. An initiator shall be able to send RMAP commands and receive RMAP replies.

b. If an initiator only node receives a command, the command shall be discarded.

c. The “Command Received by Initiator” error should be recorded.

6.8.1.3. Target only node

a. A target shall be able to receive RMAP commands and send replies.

b. If a target only node receives a reply, the reply shall be discarded.

c. The “Reply Received by Target” error should be recorded.

6.8.2. Partial implementations

a. Partial implementations of RMAP may be permitted where only some commands or com-

mand options are supported.

EXAMPLE A unit that supports write and read command but

does not implement the read-modify-write command.

b. If the target user application is passed a command or a command with options that it does not

support then it shall not authorise the command.

c. If a reply has been requested then the RMAP command not implemented or not authorised

error shall be sent back to the initiator (or other node).

NOTE See sub-clause 6.7

6.9. RMAP Conformance

6.9.1. Overview

Several SpaceWire RMAP compatible subsets can be identified each of which implements only a

part of the SpaceWire RMAP standard:

 RMAP Write Command / Target only

 RMAP Read Command / Target only

 RMAP Read-Modify-Write Command / Target only

 RMAP Read and Write / Target only

ECSS-E-50-11A

Draft 0.8, 26 May 2008

69

 RMAP Initiator

 RMAP Initiator and Target

Corresponding subsets of the SpaceWire RMAP standard are defined to which implementations

can claim conformance. The form of the conformance statement to use is the one given by the

appropriate subset definition in the following sub-clauses.

An RMAP compliant product can implement one or more of these subsets.

6.9.2. RMAP Partial implementations

6.9.2.1. Target Only

6.9.2.2. Initiator Only

6.9.2.3. RMAP Write Command

a. A product that uses the following conformance statement “This product conforms to the

SpaceWire RMAP Write specification of the ESA SpaceWire Protocols Standard (ECSS-E-

50-11A).” shall meet the RMAP Write specifications listed in Table 6-5.

Table 6-5: SpaceWire RMAP Write Command

Relevant clauses or

sub-clauses

Title

5 Protocol Identifier

a Write Command

6.7 Error Codes

b. The supplier of the RMAP equipment shall provide a table detailing the write characteristics

of the RMAP implementation.

NOTE An example of the required table is given in Table 6-6.

ECSS-E-50-11A

Draft 0.8, 26 May 2008

70

Table 6-6 Example of Write Command Product Characteristics

Write Command

Action Supported

Maximum Data

Length (bytes)

Non-aligned

access accepted

8-bit write No - -

16-bit write No - -

32-bit write Yes 12 No

64-bit write No - -

Verified write Yes 4 No

Word or byte address Word address 32-bit aligned

Endian order Little endian i.e. first byte received goes in least sig-

nificant byte of memory location

Accepted logical addresses 0xFE at power-on

0x42-0x51 after initialisation

Target logical address in reply What was in command

Accepted keys 0x20

Accepted address ranges 0x00 0000 0000 – 0x00 0000 001C

Address incrementation Incrementing address only

Status codes returned All

6.9.2.4. RMAP Read Command

a. A product that uses the following conformance statement “This product conforms to the

SpaceWire RMAP Read specification of the ESA SpaceWire Protocols Standard (ECSS-E-50-

11A).” shall meet the RMAP Read specifications listed in Table 6-7.

Table 6-7: SpaceWire RMAP Read Command

Relevant clauses

or sub-clauses

Title

5 Protocol Identifier

6.6 Read Command

6.7 Error Codes

b. The supplier of the RMAP equipment shall provide a table detailing the read characteristics

of the RMAP implementation.

NOTE An example of the required table is given in Table 6-8.

ECSS-E-50-11A

Draft 0.8, 26 May 2008

71

Table 6-8 Example Read Command Product Characteristics

Read Command

Action Supported Maximum Data

Length (bytes)

Non-aligned

access accepted

8-bit read No - -

16-bit read No - -

32-bit read Yes 12 No

64-bit read No - -

Word or byte address Word address 32-bit aligned

Endian order Big endian i.e. the most significant byte of the mem-

ory location is returned as the first byte

Accepted logical addresses 0xFE at power-on

0x42 after initialisation

Target logical address in reply Logical address of target

Accepted keys 0x20

Accepted address ranges 0x00 0000 0000 – 0x00 0000 001C

0x00 0000 0020 – 0x00 0000 003C

Address incrementation Incrementing address only

Status codes returned All

6.9.2.5. RMAP Read-Modify-Write Command

a. A product that uses the following conformance statement “This product conforms to the

SpaceWire RMAP Read-Modify-Write specification of the ESA SpaceWire Protocols Stan-

dard (ECSS-E-50-11).” shall meet the RMAP Read-ModifyWrite specification listed in Ta-

ble 6-9.

Table 6-9: SpaceWire RMAP Read-Modify-Write Command

Relevant clauses

or sub-clauses

Title

5 Protocol Identifier

6.5 Read-Modify-Write Command

6.7 Error Codes

b. The supplier of the RMAP equipment should provide a table detailing the characteristics of

the RMAP implementation.

NOTE An example of the required table is given in Table 6-10.

ECSS-E-50-11A

Draft 0.8, 26 May 2008

72

Table 6-10 Example Read-Modify-Write Command Product Characteristics

Read-Modify-Write Command

Action Supported Maximum Data

Length (bytes)

Non-aligned

access accepted

8-bit read-modify-write No - -

16-bit read-modify-write No - -

32-bit read-modify-write Yes 4 No

64-bit read-modify-write No - -

Word or byte address Byte address 32-bit word

Endian order Little endian i.e. first byte received goes in least sig-

nificant byte of memory location

Accepted logical addresses 0xFE at power-on

0x42 after initialisation

Target logical address in reply What was in command

Accepted keys 0x20

Accepted address ranges 0x00 0000 0000 – 0x00 0000 001C

Status codes returned All

ECSS-E-50-11A

Draft 0.8, 26 May 2008

73

6.10. Annex RMAP CRC Implementation (informative)

In this annex example implementations of the CRC used by RMAP are provide in VHDL and C-

code.

6.10.1. VHDL implementation of RMAP CRC

 -- Cyclic Redundancy Code (CRC) for Remote Memory Access Protocol (RMAP)

 -- Purpose:

 -- Given an intermediate SpaceWire RMAP CRC byte value and an RMAP header

 -- or data byte, return an updated RMAP CRC byte value.

 --

 -- Parameters:

 -- INCRC(7:0) - The intermediate RMAP CRC byte value.

 -- INBYTE(7:0) - The RMAP Header or Data byte.

 --

 -- Return value:

 -- OUTCRC(7:0) - The updated RMAP CRC byte value.

 --

 -- Description:

 -- One-to-many implementation: Galois version of LFSR (reverse CRC).

 --

 -- +---+ +---+ +---+ +---+ +---+ +---+ +---+ +---+

 -- out <-+-| 7 |<--| 6 |<--| 5 |<--| 4 |<--| 3 |<--| 2 |<-X-| 1 |<-X-| 0 |<-+

 -- | +---+ +---+ +---+ +---+ +---+ +---+ ^ +---+ ^ +---+ |

 -- | | | |

 -- v | | |

 -- in -->X--+--------+--------+

 -- x**8 x**7 x**6 x**5 x**4 x**3 x**2 x**1 x**0

 --

 -- Generator polynomial: g(x) = x**8 + x**2 + x**1 + x**0

 --

 -- Notes:

 -- The INCRC input CRC value must have all bits zero for the first INBYTE.

 --

 -- The first INBYTE must be the first Header or Data byte covered by the

 -- RMAP CRC calculation. The remaining bytes must be supplied in the RMAP

 -- transmission/reception byte order.

 --

 -- If the last INBYTE is the last Header or Data byte covered by the RMAP

 -- CRC calculation then the OUTCRC output will be the RMAP CRC byte to be

 -- used for transmission or to be checked against the received CRC byte.

 --

 -- If the last INBYTE is the Header or Data CRC byte then the OUTCRC

 -- output will be zero if no errors have been detected and non-zero if

ECSS-E-50-11A

Draft 0.8, 26 May 2008

74

 -- an error has been detected.

 --

 -- Each byte is inserted in or extracted from a SpaceWire packet without

 -- the need for any bit reversal or similar manipulation. The SpaceWire

 -- packet transmission and reception procedure does the necessary bit

 -- ordering when sending and receiving Data Characters (see ECSS-E-50-12A

 -- clause 7.2).

 --

 -- SpaceWire data is sent/received Least Significant Bit (LSB) first:

 -- INBYTE(0) is the LSB of SpaceWire data byte (sent/received first)

 -- INCRC(0) is the LSB of SpaceWire data byte (sent/received first)

 --

 function RMAP_CalculateCRC (

 constant INCRC: in Std_Logic_Vector(7 downto 0);

 constant INBYTE: in Std_Logic_Vector(7 downto 0))

 return Std_Logic_Vector is -- Same range as the two inputs

 -- This variable is to hold the output CRC value.

 variable OUTCRC: Std_Logic_Vector(7 downto 0);

 -- Internal Linear Feedback Shift Register (LFSR). Note that the

 -- vector indices correspond to the powers of the Galois field

 -- polynomial g(x) which are NOT the same as the indices of the

 -- SpaceWire data byte.

 variable LFSR: Std_Logic_Vector(7 downto 0);

 begin

 -- External to internal bit-order reversal to match indices.

 for i in 0 to 7 loop

 LFSR(7-i) := INCRC(i);

 end loop;

 -- Left shift LFSR eight times feeding in INBYTE bit 0 first (LSB).

 for j in 0 to 7 loop

 LFSR(7 downto 0) := (LFSR(6 downto 2)) &

 (INBYTE(j) xor LFSR(7) xor LFSR(1)) &

 (INBYTE(j) xor LFSR(7) xor LFSR(0)) &

 (INBYTE(j) xor LFSR(7));

 end loop;

 -- Internal to external bit-order reversal to match indices.

 for i in 0 to 7 loop

 OUTCRC(7-i) := LFSR(i);

 end loop;

 -- Return the updated RMAP CRC byte value.

 return OUTCRC;

 end function RMAP_CalculateCRC;

ECSS-E-50-11A

Draft 0.8, 26 May 2008

75

6.10.2. C-code implementation of RMAP CRC

/*

 * The local look-up table used to calculate the updated RMAP CRC

 * byte from the intermediate CRC byte and the input byte.

 */

static const unsigned char RMAP_CRCTable[] = {

 0x00, 0x91, 0xe3, 0x72, 0x07, 0x96, 0xe4, 0x75,

 0x0e, 0x9f, 0xed, 0x7c, 0x09, 0x98, 0xea, 0x7b,

 0x1c, 0x8d, 0xff, 0x6e, 0x1b, 0x8a, 0xf8, 0x69,

 0x12, 0x83, 0xf1, 0x60, 0x15, 0x84, 0xf6, 0x67,

 0x38, 0xa9, 0xdb, 0x4a, 0x3f, 0xae, 0xdc, 0x4d,

 0x36, 0xa7, 0xd5, 0x44, 0x31, 0xa0, 0xd2, 0x43,

 0x24, 0xb5, 0xc7, 0x56, 0x23, 0xb2, 0xc0, 0x51,

 0x2a, 0xbb, 0xc9, 0x58, 0x2d, 0xbc, 0xce, 0x5f,

 0x70, 0xe1, 0x93, 0x02, 0x77, 0xe6, 0x94, 0x05,

 0x7e, 0xef, 0x9d, 0x0c, 0x79, 0xe8, 0x9a, 0x0b,

 0x6c, 0xfd, 0x8f, 0x1e, 0x6b, 0xfa, 0x88, 0x19,

 0x62, 0xf3, 0x81, 0x10, 0x65, 0xf4, 0x86, 0x17,

 0x48, 0xd9, 0xab, 0x3a, 0x4f, 0xde, 0xac, 0x3d,

 0x46, 0xd7, 0xa5, 0x34, 0x41, 0xd0, 0xa2, 0x33,

 0x54, 0xc5, 0xb7, 0x26, 0x53, 0xc2, 0xb0, 0x21,

 0x5a, 0xcb, 0xb9, 0x28, 0x5d, 0xcc, 0xbe, 0x2f,

 0xe0, 0x71, 0x03, 0x92, 0xe7, 0x76, 0x04, 0x95,

 0xee, 0x7f, 0x0d, 0x9c, 0xe9, 0x78, 0x0a, 0x9b,

 0xfc, 0x6d, 0x1f, 0x8e, 0xfb, 0x6a, 0x18, 0x89,

 0xf2, 0x63, 0x11, 0x80, 0xf5, 0x64, 0x16, 0x87,

 0xd8, 0x49, 0x3b, 0xaa, 0xdf, 0x4e, 0x3c, 0xad,

 0xd6, 0x47, 0x35, 0xa4, 0xd1, 0x40, 0x32, 0xa3,

 0xc4, 0x55, 0x27, 0xb6, 0xc3, 0x52, 0x20, 0xb1,

 0xca, 0x5b, 0x29, 0xb8, 0xcd, 0x5c, 0x2e, 0xbf,

 0x90, 0x01, 0x73, 0xe2, 0x97, 0x06, 0x74, 0xe5,

 0x9e, 0x0f, 0x7d, 0xec, 0x99, 0x08, 0x7a, 0xeb,

 0x8c, 0x1d, 0x6f, 0xfe, 0x8b, 0x1a, 0x68, 0xf9,

 0x82, 0x13, 0x61, 0xf0, 0x85, 0x14, 0x66, 0xf7,

 0xa8, 0x39, 0x4b, 0xda, 0xaf, 0x3e, 0x4c, 0xdd,

 0xa6, 0x37, 0x45, 0xd4, 0xa1, 0x30, 0x42, 0xd3,

 0xb4, 0x25, 0x57, 0xc6, 0xb3, 0x22, 0x50, 0xc1,

 0xba, 0x2b, 0x59, 0xc8, 0xbd, 0x2c, 0x5e, 0xcf

};

/*

-- Cyclic Redundancy Code (CRC) for Remote Memory Access Protocol (RMAP)

-- Purpose:

-- Given an intermediate SpaceWire RMAP CRC byte value and an RMAP Header

-- or Data byte, return an updated RMAP CRC byte value.

--

ECSS-E-50-11A

Draft 0.8, 26 May 2008

76

-- Parameters:

-- INCRC - The intermediate RMAP CRC byte value.

-- INBYTE - The RMAP Header or Data byte.

--

-- Return value:

-- OUTCRC - The updated RMAP CRC byte value.

--

-- Description:

-- Table look-up version: uses the XOR of the intermediate CRC byte with the

-- header/data byte to obtain the updated CRC byte from a look-up table.

--

-- Generator polynomial: g(x) = x**8 + x**2 + x**1 + x**0

--

-- Notes:

-- The INCRC input CRC value must have all bits zero for the first INBYTE.

--

-- The first INBYTE must be the first Header or Data byte covered by the

-- RMAP CRC calculation. The remaining bytes must be supplied in the RMAP

-- transmission/reception byte order.

--

-- If the last INBYTE is the last Header or Data byte covered by the RMAP

-- CRC calculation then the OUTCRC output will be the RMAP CRC byte to be

-- used for transmission or to be checked against the received CRC byte.

--

-- If the last INBYTE is the Header or Data CRC byte then the OUTCRC

-- output will be zero if no errors have been detected and non-zero if

-- an error has been detected.

--

-- Each byte is inserted in or extracted from a SpaceWire packet without

-- the need for any bit reversal or similar manipulation. The SpaceWire

-- packet transmission and reception procedure does the necessary bit

-- ordering when sending and receiving Data Characters (see ECSS-E-50-12A

-- clause 7.2).

 */

unsigned char RMAP_CalculateCRC(unsigned char INCRC, unsigned char INBYTE)

 { return RMAP_CRCTable[INCRC ^ INBYTE]; }

6.10.3. RMAP CRC test patterns

The following test patterns are based on complete SpaceWire RMAP commands and replies. The

data and CRC values are read from top to bottom and are represented as bytes in hexadecimal

notation.

Each byte is inserted in a SpaceWire packet without the need for any bit reversal or similar ma-

nipulation. The SpaceWire packet transmission and reception procedure does the necessary bit

ordering when sending and receiving Data Characters (see ECSS-E-50-12A clause 7.2).

Prerequisites:

Writeable and readable memory at location 0xA0000000 through 0xA0000020.

ECSS-E-50-11A

Draft 0.8, 26 May 2008

77

Key: 0x00

Target Logical Address: 0xFE

Initiator Logical Address: 0x67

Target SpaceWire Address: 0x11 0x22 0x33 0x44 0x55 0x66 0x77, or

 0x11 0x22 0x33 0x44

Initiator SpaceWire Address: 0x99 0xAA 0xBB 0xCC 0xDD 0xEE 0x00, or

 0x99 0xAA 0xBB 0xCC

Note that when the number of bytes in an Initiator SpaceWire Address is not divisible by four, it

requires that the Reply SpaceWire Address field in the corresponding command is padded with

one or more leading bytes with value 0x00.

--

-- RMAP non-verified incrementing write-with-reply command - without SpaceWire addresses:

Target Logical Address: 0xFE

Protocol Identifier: 0x01

Instruction: 0x6C

Key: 0x00

Initiator Logical Address: 0x67

Transaction Identifier MS: 0x00

Transaction Identifier LS: 0x00

Extended Address: 0x00

Address MS: 0xA0

Address: 0x00

Address: 0x00

Address LS: 0x00

Data Length MS: 0x00

Data Length: 0x00

Data Length LS: 0x10

Header CRC: 0x9F

Data: 0x01

Data: 0x23

Data: 0x45

Data: 0x67

Data: 0x89

Data: 0xAB

Data: 0xCD

Data: 0xEF

Data: 0x10

Data: 0x11

Data: 0x12

Data: 0x13

ECSS-E-50-11A

Draft 0.8, 26 May 2008

78

Data: 0x14

Data: 0x15

Data: 0x16

Data: 0x17

Data CRC: 0x56

-- Expected RMAP successful write reply to previous command - without SpaceWire addresses:

Initiator Logical Address: 0x67

Protocol Identifier: 0x01

Instruction: 0x2C

Status: 0x00

Target Logical Address: 0xFE

Transaction Identifier MS: 0x00

Transaction Identifier MS: 0x00

Header CRC: 0xED

--

-- RMAP incrementing read command - without SpaceWire addresses:

Target Logical Address: 0xFE

Protocol Identifier: 0x01

Instruction: 0x4C

Key: 0x00

Initiator Logical Address: 0x67

Transaction Identifier MS: 0x00

Transaction Identifier LS: 0x01

Extended Address: 0x00

Address MS: 0xA0

Address: 0x00

Address: 0x00

Address LS: 0x00

Data Length MS: 0x00

Data Length: 0x00

Data Length LS: 0x10

Header CRC: 0xC9

-- Expected RMAP successful read reply to previous command - without SpaceWire addresses:

Initiator Logical Address: 0x67

Protocol Identifier: 0x01

Instruction: 0x0C

Status: 0x00

ECSS-E-50-11A

Draft 0.8, 26 May 2008

79

Target Logical Address: 0xFE

Transaction Identifier MS: 0x00

Transaction Identifier MS: 0x01

Reserved: 0x00

Data Length MS: 0x00

Data Length: 0x00

Data Length LS: 0x10

Header CRC: 0x6D

Data: 0x01

Data: 0x23

Data: 0x45

Data: 0x67

Data: 0x89

Data: 0xAB

Data: 0xCD

Data: 0xEF

Data: 0x10

Data: 0x11

Data: 0x12

Data: 0x13

Data: 0x14

Data: 0x15

Data: 0x16

Data: 0x17

Data CRC: 0x56

--

-- RMAP non-verified incrementing write-with-reply command - with SpaceWire addresses:

Target SpaceWire Address: 0x11 (not part of Header CRC)

Target SpaceWire Address: 0x22 (not part of Header CRC)

Target SpaceWire Address: 0x33 (not part of Header CRC)

Target SpaceWire Address: 0x44 (not part of Header CRC)

Target SpaceWire Address: 0x55 (not part of Header CRC)

Target SpaceWire Address: 0x66 (not part of Header CRC)

Target SpaceWire Address: 0x77 (not part of Header CRC)

Target Logical Address: 0xFE

Protocol Identifier: 0x01

Instruction: 0x6E

Key: 0x00

Reply SpaceWire Address: 0x00

ECSS-E-50-11A

Draft 0.8, 26 May 2008

80

Reply SpaceWire Address: 0x99

Reply SpaceWire Address: 0xAA

Reply SpaceWire Address: 0xBB

Reply SpaceWire Address: 0xCC

Reply SpaceWire Address: 0xDD

Reply SpaceWire Address: 0xEE

Reply SpaceWire Address: 0x00

Initiator Logical Address: 0x67

Transaction Identifier MS: 0x00

Transaction Identifier LS: 0x02

Extended Address: 0x00

Address MS: 0xA0

Address: 0x00

Address: 0x00

Address LS: 0x10

Data Length MS: 0x00

Data Length: 0x00

Data Length LS: 0x10

Header CRC: 0x7F

Data: 0xA0

Data: 0xA1

Data: 0xA2

Data: 0xA3

Data: 0xA4

Data: 0xA5

Data: 0xA6

Data: 0xA7

Data: 0xA8

Data: 0xA9

Data: 0xAA

Data: 0xAB

Data: 0xAC

Data: 0xAD

Data: 0xAE

Data: 0xAF

Data CRC: 0xB4

-- Expected RMAP successful write reply to the previous command - with SpaceWire addresses:

Reply SpaceWire Address: 0x99 (not part of Header CRC)

Reply SpaceWire Address: 0xAA (not part of Header CRC)

ECSS-E-50-11A

Draft 0.8, 26 May 2008

81

Reply SpaceWire Address: 0xBB (not part of Header CRC)

Reply SpaceWire Address: 0xCC (not part of Header CRC)

Reply SpaceWire Address: 0xDD (not part of Header CRC)

Reply SpaceWire Address: 0xEE (not part of Header CRC)

Reply SpaceWire Address: 0x00 (not part of Header CRC)

Initiator Logical Address: 0x67

Protocol Identifier: 0x01

Instruction: 0x2E

Status: 0x00

Target Logical Address: 0xFE

Transaction Identifier MS: 0x00

Transaction Identifier MS: 0x02

Header CRC: 0x1D

--

-- RMAP incrementing read command - with SpaceWire addresses:

Target SpaceWire Address: 0x11 (not part of Header CRC)

Target SpaceWire Address: 0x22 (not part of Header CRC)

Target SpaceWire Address: 0x33 (not part of Header CRC)

Target SpaceWire Address: 0x44 (not part of Header CRC)

Target Logical Address: 0xFE

Protocol Identifier: 0x01

Instruction: 0x4D

Key: 0x00

Reply SpaceWire Address: 0x99

Reply SpaceWire Address: 0xAA

Reply SpaceWire Address: 0xBB

Reply SpaceWire Address: 0xCC

Initiator Logical Address: 0x67

Transaction Identifier MS: 0x00

Transaction Identifier LS: 0x03

Extended Address: 0x00

Address MS: 0xA0

Address: 0x00

Address: 0x00

Address LS: 0x10

Data Length MS: 0x00

Data Length: 0x00

Data Length LS: 0x10

Header CRC: 0xF7

ECSS-E-50-11A

Draft 0.8, 26 May 2008

82

-- Expected RMAP successful read reply to the previous command - with SpaceWire addresses:

Reply SpaceWire Address: 0x99 (not part of Header CRC)

Reply SpaceWire Address: 0xAA (not part of Header CRC)

Reply SpaceWire Address: 0xBB (not part of Header CRC)

Reply SpaceWire Address: 0xCC (not part of Header CRC)

Initiator Logical Address: 0x67

Protocol Identifier: 0x01

Instruction: 0x0D

Status: 0x00

Target Logical Address: 0xFE

Transaction Identifier MS: 0x00

Transaction Identifier MS: 0x03

Reserved: 0x00

Data Length MS: 0x00

Data Length: 0x00

Data Length LS: 0x10

Header CRC: 0x52

Data: 0xA0

Data: 0xA1

Data: 0xA2

Data: 0xA3

Data: 0xA4

Data: 0xA5

Data: 0xA6

Data: 0xA7

Data: 0xA8

Data: 0xA9

Data: 0xAA

Data: 0xAB

Data: 0xAC

Data: 0xAD

Data: 0xAE

Data: 0xAF

Data CRC: 0xB4

--

ECSS-E-50-11A

Draft 0.8, 26 May 2008

83

6.11. Annex Example Service Interface Specification (informative)

Example service interface specifications for RMAP are provided in this annex.

The managed parameters are defined in sub-clause 6.9.

6.11.1. Write Service

6.11.1.1. Initiator

The service primitives associated with this service are:

a) WRITE.request;

b) WRITE.confirmation.

6.11.1.2. WRITE.request

6.11.1.2.1. Function

The RMAP Initiator Write service user passes a WRITE.request primitive to the service provider

to request that data is written to memory in a target across the SpaceWire network.

6.11.1.2.2. Semantics

The WRITE.request primitive provides parameters as follows:

WRITE.request (Target SpaceWire Address, Target Logical Address, Write Command Options,

Key, Reply Address, Initiator Logical Address, Transaction Identifier, Extended Address, Mem-

ory Address, Data Length, Data)

6.11.1.2.3. When Generated

The WRITE.request primitive is passed to the RMAP Initiator Write service provider to request

it to write the data into memory in the target.

6.11.1.2.4. Effect On Receipt

Receipt of the WRITE.request primitive causes the RMAP Initiator Write service provider to

send an RMAP write command to the target.

6.11.1.3. WRITE.confirmation

6.11.1.3.1. Function

The RMAP Initiator Write service provider passes a WRITE.confirmation primitive to the

RMAP Initiator Write Service user to confirm that data has been written to memory in a target

across the SpaceWire network or to report that an error occurred.

6.11.1.3.2. Semantics

The WRITE.confirmation primitive provides parameters as follows:

WRITE.confirmation (Transaction Identifier, Status)

6.11.1.3.3. When Generated

The WRITE.confirmation primitive is passed to the RMAP Initiator Write Service user in the

initiator when a write reply is received.

6.11.1.3.4. Effect On Receipt

The effect on receipt of the WRITE.confirmation primitive on the RMAP Initiator Write Service

user in the initiator is undefined.

6.11.1.3.5. Additional Comments

ECSS-E-50-11A

Draft 0.8, 26 May 2008

84

The transaction identifier parameter is used by the RMAP Initiator Write service user to identify

which RMAP transaction is being confirmed.

6.11.1.4. Target

The service primitives associated with this service are:

a) WRITE.authorisation.indication;

b) WRITE.authorisation.response;

c) WRITE.data.indication;

d) WRITE.data.response;

e) WRITE.indication.

6.11.1.5. WRITE.authorisation.indication

6.11.1.5.1. Function

The RMAP Target Write service provider passes a WRITE.authorisation.indication to the RMAP

Target Write service user to ask for authorisation to write to memory in the target.

6.11.1.5.2. Semantics

The WRITE.authorisation.indication primitive provides parameters as follows:

WRITE.authorisation.indication (Target Logical Address, Instruction, Key, Initiator Logical Ad-

dress, Transaction Identifier, Extended Address, Memory Address, Data Length)

6.11.1.5.3. When Generated

The WRITE.authorisation.indication primitive is passed from the RMAP Target Write service

provider to the RMAP Target Write Service user to request permission to write to memory in the

target.

6.11.1.5.4. Effect On Receipt

The effect of receipt of the WRITE.authorisation.indication primitive on the RMAP Target Write

Service user is for it to issue a WRITE.authorisation.response primitive either authorising or not

authorising the memory write operation.

6.11.1.6. WRITE.authorisation.response

6.11.1.6.1. Function

The RMAP Target Write service user passes a WRITE.authorisation.response to the RMAP Tar-

get Write service provider to give permission or deny permission to write to memory in the tar-

get.

6.11.1.6.2. Semantics

The WRITE.authorisation.response primitive provides parameters as follows:

WRITE.authorisation.response (Authorise)

6.11.1.6.3. When Generated

The WRITE.authorisation.response primitive is passed from the RMAP Target Write service

user to the RMAP Target Write service provider at the target in response to a

WRITE.authorisation.indication primitive.

6.11.1.6.4. Effect On Receipt

The effect of receipt of the WRITE.authorisation.response primitive on the RMAP Target Write

service provider is for it to write data to memory if authorisation is given.

ECSS-E-50-11A

Draft 0.8, 26 May 2008

85

6.11.1.7. WRITE.data.indication

6.11.1.7.1. Function

The RMAP Target Write service provider passes a WRITE.data.indication to the RMAP Write

service user to write data to memory in the target.

6.11.1.7.2. Semantics

The WRITE.data.indication primitive provides parameters as follows:

WRITE.data.indication (Extended Address, Address, Data Length, Incrementing/Non-

incrementing, Data)

6.11.1.7.3. When Generated

The WRITE.data.indication primitive is passed from the RMAP Target Write service provider to

the RMAP Target Write Service user when permission to write data has been given by the

WRITE.authorisation.response primitive.

6.11.1.7.4. Effect On Receipt

The effect of receipt of the WRITE.data.indication primitive on the RMAP Target Write service

user is for data to be written into memory in the target.

6.11.1.8. WRITE.data.response

6.11.1.8.1. Function

The RMAP Target Write service user passes a WRITE.data.response to the RMAP Write service

provided when data has been written to memory in the target.

6.11.1.8.2. Semantics

The WRITE.data.response primitive provides parameters as follows:

WRITE.data.response (Status)

6.11.1.8.3. When Generated

The WRITE.data.response primitive is passed from the RMAP Target Write service user to the

RMAP Target Write service provider when data has been successfully written to target memory

or a failure has occurred while writing data to target memory by the WRITE.data.indication

primitive.

6.11.1.8.4. Effect On Receipt

The effect of receipt of the WRITE.data.response primitive on the RMAP Target Write service

provider is for a reply to be sent to the initiator (or other node) if requested and for a

WRITE.indication to be passed to the RMAP Target Write service user.

6.11.1.9. WRITE.indication

6.11.1.9.1. Function

The RMAP Target Write service provider passes a WRITE.indication to the RMAP Write ser-

vice user to indicate that data has been successfully written to memory in the target.

6.11.1.9.2. Semantics

The WRITE.indication primitive does not have any parameters.

6.11.1.9.3. When Generated

The WRITE.indication primitive is produced when a WRITE.data.response is received from the

RMAP Target Write service user with its status parameter indicating that no fault has occurred

during the write operation.

ECSS-E-50-11A

Draft 0.8, 26 May 2008

86

6.11.1.9.4. Effect On Receipt

The effect of receipt of the WRITE.indication primitive on the RMAP Target Write service user

is undefined.

6.11.2. Read Service

6.11.2.1. Initiator

The service primitives associated with this service are:

a) READ.request;

b) READ.confirmation.

6.11.2.2. READ.request

6.11.2.2.1. Function

The RMAP Initiator Read service user passes a READ.request primitive to the RMAP Initiator

Read service provider to request that data is read from memory in a target across the SpaceWire

network.

6.11.2.2.2. Semantics

The READ.request primitive provides parameters as follows:

READ.request (Target SpaceWire Address, Target Logical Address, Read Command Options,

Key, Reply Address, Initiator Logical Address, Transaction Identifier, Extended Address, Mem-

ory Address, Data Length)

6.11.2.2.3. When Generated

The READ.request primitive is passed to the RMAP Initiator Read service provider to request it

to read data from memory in the target.

6.11.2.2.4. Effect On Receipt

Receipt of the READ.request primitive causes the RMAP Initiator Read service provider to send

an RMAP read command to the target.

6.11.2.3. READ.confirmation

6.11.2.3.1. Function

The RMAP Initiator Read service provider passes a READ.confirmation primitive to the RMAP

Initiator Read service user to confirm that data has been read from memory in a target across the

SpaceWire network and to provide that data to the RMAP Initiator Read service user, or to report

that an error occurred.

6.11.2.3.2. Semantics

The READ.confirmation primitive provides parameters as follows:

READ.confirmation (Transaction Identifier, Status, Data Length, Data)

6.11.2.3.3. When Generated

The READ.confirmation primitive is passed to the RMAP Initiator Read service user when a

read reply is received.

6.11.2.3.4. Effect On Receipt

The effect on receipt of the READ.confirmation primitive by the RMAP Initiator Read service

user is undefined.

ECSS-E-50-11A

Draft 0.8, 26 May 2008

87

6.11.2.3.5. Additional Comments

The transaction identifier parameter is used by the RMAP Initiator Read service user to identify

which RMAP transaction is being confirmed.

6.11.2.4. Target

The service primitives associated with this service are:

a) READ.authorisation.indication;

b) READ.authorisation.response;

c) READ.data.indication;

d) READ.data.response;

e) READ.indication;

6.11.2.5. READ.authorisation.indication

6.11.2.5.1. Function

The RMAP Target Read service provider passes a READ.authorisation.indication to the RMAP

Target Read service user to ask for authorisation to read data from memory in the target.

6.11.2.5.2. Semantics

The READ.authorisation.indication primitive provides parameters as follows:

READ.authorisation indication (Target Logical Address, Instruction, Key, Initiator Logical Ad-

dress, Transaction Identifier, Extended Address, Memory Address, Data Length)

6.11.2.5.3. When Generated

The READ.authorisation.indication primitive is passed from the RMAP Target Read service

provider to the RMAP Target Read service user at the target to request permission to read data

from memory in the target.

6.11.2.5.4. Effect On Receipt

The effect of receipt of the READ.authorisation.indication primitive on the RMAP Target Read

service user is for it to issue a READ.authorisation.response primitive either accepting or reject-

ing the read operation.

6.11.2.6. READ.authorisation.response

6.11.2.6.1. Function

The RMAP Target Read service user passes a READ.authorisation.response to the RMAP Target

Read service provider to give permission or deny permission to read from memory in the target.

6.11.2.6.2. Semantics

The READ.authorisation.response primitive provides parameters as follows:

READ.authorisation.response (Authorise)

6.11.2.6.3. When Generated

The READ.authorisation.response primitive is passed from the RMAP Target Read service user

to the RMAP Target Read service provider at the target in response to a

READ.authorisation.indication primitive.

6.11.2.6.4. Effect On Receipt

The effect of receipt of the READ.authorisation.response primitive on the RMAP Target Read

service provider is for it to read data from memory by issuing a READ.data.indication primitive.

ECSS-E-50-11A

Draft 0.8, 26 May 2008

88

6.11.2.7. READ.data.indication

6.11.2.7.1. Function

The RMAP Target Read service provider passes a READ.data.indication to the RMAP Target

Read service user to read data from memory in the target.

6.11.2.7.2. Semantics

The READ.data.indication primitive provides parameters as follows:

READ.data.indication (Extended Address, Address, Data Length, Incrementing/Non-

incrementing)

6.11.2.7.3. When Generated

The READ.data.indication primitive is passed from the RMAP Target Read service provider to

the RMAP Target Read service user at the target when permission to read data has been given by

the READ.authorisation.response primitive.

6.11.2.7.4. Effect On Receipt

The effect of receipt of the READ.data.indication primitive on the RMAP Target Read service

user is for data to be read from memory in the target.

6.11.2.8. READ.data.response

6.11.2.8.1. Function

The RMAP Target Read service provider passes a READ.data.response to the RMAP Target

Read service user to provide data read from memory in the target.

6.11.2.8.2. Semantics

The READ.data.response primitive provides parameters as follows:

READ.data.response (Status, Data Length, Data)

6.11.2.8.3. When Generated

The READ.data.response primitive is passed from the RMAP Target Read service user to the

RMAP Target Read service provider after a READ.data.indication has been received.

6.11.2.8.4. Effect On Receipt

The effect of receipt of the READ.data.response primitive on the RMAP Target Read service

provider is for the data read from memory in the target or an error to be returned to the initiator

(or other node).

6.11.2.9. READ.indication

6.11.2.9.1. Function

The RMAP Target Read service provider passes a READ.indication to the RMAP Target Read

service user to indicate that data has been successfully read from memory in the target.

6.11.2.9.2. Semantics

The READ.indication primitive provides parameters as follows:

READ.indication

6.11.2.9.3. When Generated

The READ.indication primitive is passed from the RMAP Target Read service provider to the

RMAP Target Read service user at the target when data has been successfully read from memory

in the target.

ECSS-E-50-11A

Draft 0.8, 26 May 2008

89

6.11.2.9.4. Effect On Receipt

The effect of receipt of the READ.indication primitive on the RMAP Target Read service user is

undefined.

6.11.3. Read-Modify-Write Service

6.11.3.1. Initiator

The service primitives associated with this service are:

a) RMW.request;

b) RMW.confirmation.

6.11.3.2. RMW.request

6.11.3.2.1. Function

At the initiator, the RMAP read-modify-write service user passes a RMW.request primitive to

the service provider to request that data is read-modify-write memory in a target across the

SpaceWire network.

6.11.3.2.2. Semantics

The RMW.request primitive provides parameters as follows:

RMW.request (Target SpaceWire Address, Target Logical Address, RMW Command Options,

Key, Reply Address, Initiator Logical Address, Transaction Identifier, Extended Address, Mem-

ory Address, Data Length, Data, Mask)

6.11.3.2.3. When Generated

The RMW.request primitive is passed to the service provider to request it to read-modify-write

memory in the target.

6.11.3.2.4. Effect On Receipt

Receipt of the RMW.request primitive causes the service provider to send an RMAP read-

modify-write command.

6.11.3.3. RMW.confirmation

6.11.3.3.1. Function

At the initiator, the service provider passes a RMW.confirmation primitive to the RMAP read-

modify-write service user to confirm that data has been read-modify-written to memory in the

target across the SpaceWire network.

6.11.3.3.2. Semantics

The RMW.confirmation primitive provides parameters as follows:

RMW.confirmation (Transaction Identifier, Status, Data)

6.11.3.3.3. When Generated

The RMW.confirmation primitive is passed to the RMAP read-modify-write service user in the

initiator when a RMW reply is received to confirm that data has been read-modify-written to the

memory in the target and to provide the data read to the initiator.

6.11.3.3.4. Effect On Receipt

Receipt of the RMW.confirmation primitive by the RMAP read-modify-write service user in the

initiator is undefined.

ECSS-E-50-11A

Draft 0.8, 26 May 2008

90

6.11.3.3.5. Additional Comments

The transaction identifier parameter is used in the initiator to identify which RMAP transaction

is being confirmed.

6.11.3.4. Target

a) RMW.authorisation.indication;

b) RMW.authorisation.response;

c) RMW.read.data.indication;

d) RMW.read data.response;

e) RMW.write.data.indication;

f) RMW.write.data.response;

g) RMW.indication;

.

6.11.3.5. RMW.authorisation.indication

6.11.3.5.1. Function

The RMAP Target RMW service provider passes a RMW.authorisation.indication to the RMAP

Target RMW service user to ask for authorisation to read-modify-write memory in the target.

6.11.3.5.2. Semantics

The RMW.authorisation.indication primitive provides parameters as follows:

RMW.authorisation.indication (Target Logical Address, Instruction, Key, Initiator Logical Ad-

dress, Transaction Identifier, Extended Address, Memory Address, Data Length)

6.11.3.5.3. When Generated

The RMW.authorisation.indication primitive is passed from the RMAP Target RMW service

provider to the RMAP Target RMW service user at the target to request permission to read-

modify-write memory in the target.

6.11.3.5.4. Effect On Receipt

The effect of receipt of the RMW.authorisation.indication primitive by the RMAP Target RMW

service user is for it to issue a RMW.authorisation.response primitive either accepting or reject-

ing the RMW operation.

6.11.3.6. RMW.authorisation.response

6.11.3.6.1. Function

The RMAP Target RMW service user passes a RMW.authorisation.response to the RMAP Tar-

get RMW service provider to give permission or deny permission to read-modify-write memory

in the target.

6.11.3.6.2. Semantics

The RMW.authorisation.response primitive provides parameters as follows:

RMW.authorisation.response (Authorise)

6.11.3.6.3. When Generated

ECSS-E-50-11A

Draft 0.8, 26 May 2008

91

The RMW.authorisation.response primitive is passed from the RMAP Target RMW service user

to the RMAP Target RMW service provider at the target in response to a READ.authorisation

primitive.

6.11.3.6.4. Effect On Receipt

The effect of receipt of the RMW.authorisation.response primitive on the RMAP Target RMW

service provider is for it to read memory in the target by issuing a RMW.data.indication primi-

tive.

6.11.3.7. RMW.read.data.indication

6.11.3.7.1. Function

The RMAP Target RMW service provider passes a RMW.read.data.indication to the RMAP

Target RMW service user to read data from memory in the target.

6.11.3.7.2. Semantics

The RMW.read.data.indication primitive provides parameters as follows:

RMW.read.data.indication (Extended Address, Address, Data Length, Incrementing/Non-

incrementing)

6.11.3.7.3. When Generated

The RMW.read.data.indication primitive is passed from the RMAP Target RMW service pro-

vider to the RMAP Target RMW service user at the target when permission to read data has been

given by the RMW.authorisation.response primitive.

6.11.3.7.4. Effect On Receipt

The effect of receipt of the RMW.read.data.indication primitive on the RMAP Target RMW ser-

vice user is for data to be read from memory in the target and returned to the service provider in

a RMW.read.data.response.

6.11.3.8. RMW.read.data.response

6.11.3.8.1. Function

The RMAP Target RMW service provider passes a RMW.read.data.response to the RMAP Tar-

get RMW service user to provide data read from memory in the target.

6.11.3.8.2. Semantics

The READ.data.response primitive provides parameters as follows:

READ.data.response (Status, Data Length, Data)

6.11.3.8.3. When Generated

The RMW.read.data.response primitive is passed from the RMAP Target RMW service user to

the RMAP Target RMW service provider after a RMW.read.data.indication has been received.

6.11.3.8.4. Effect On Receipt

The effect of receipt of the RMW.read.data.response primitive on the RMAP Target RMW ser-

vice provider is for the data and mask from the RMW command to be passed to the RMAP

RMW service user for combining with the data read from memory and writing back into mem-

ory.

6.11.3.9. RMW.write.data.indication

6.11.3.9.1. Function

The RMAP Target RMW service provider passes a RMW.write.data.indication to the RMAP

RMW service user to modify and write data to memory in the target.

ECSS-E-50-11A

Draft 0.8, 26 May 2008

92

6.11.3.9.2. Semantics

The RMW.write.data.indication primitive provides parameters as follows:

RMW.write.data.indication (Extended Address, Address, Data Length, Incrementing/Non-

incrementing, Data, Mask)

6.11.3.9.3. When Generated

The RMWwrite.data.indication primitive is passed from the RMAP Target RMW service pro-

vider to the RMAP Target RMW Service user when data has been read from memory and re-

turned by the RMW.read.data.response primitive.

6.11.3.9.4. Effect On Receipt

The effect of receipt of the RMW.write.data.indication primitive on the RMAP Target Write ser-

vice user is for the data and mask to be combined in some way with the data previously in mem-

ory and the new value written into the same memory location in the target.

6.11.3.10. RMW.write.data.response

6.11.3.10.1. Function

The RMAP Target RMW service user passes a RMW.write.data.response to the RMAP RMW

service provided when data and mask have been combined with the data previously in memory

and the new result written to memory in the target.

6.11.3.10.2. Semantics

The RMW.write.data.response primitive provides parameters as follows:

RMW.write.data.response (Status)

6.11.3.10.3. When Generated

The RMW.write.data.response primitive is passed from the RMAP Target RMW service user to

the RMAP Target RMW service provider when the data and mask have been successfully com-

bined with the data previously in memory and the new result written to target memory or a fail-

ure has occurred while combining or writing data to target memory by the

RMW.write.data.indication primitive.

6.11.3.10.4. Effect On Receipt

The effect of receipt of the RMW.write.data.response primitive on the RMAP Target RMW ser-

vice provider is for a reply to be sent to the initiator (or other node) if requested and for a

RMW.indication to be passed to the RMAP Target RMW service user.

6.11.3.11. RMW.indication

6.11.3.11.1. Function

At the target, the service provider passes a RMW.indication to the RMAP RMW service user af-

ter read-modify-writing memory in the target.

6.11.3.11.2. Semantics

The RMW.indication primitive does not have any parameters.

6.11.3.11.3. When Generated

The RMW.indication primitive is produced when a RMW.write.data.response is received from

the RMAP Target RMW service user with its status parameter indicating that no fault has oc-

curred during the read-modify-write operation.

6.11.3.11.4. Effect On Receipt

The effect of receipt of the RMW.indication primitive on the RMAP Target RMW service user is

undefined.

ECSS-E-50-11A

Draft 0.8, 26 May 2008

93

7.This heading is here because of problems with
clause not being a heading

ECSS-E-50-11A

Draft 0.8, 26 May 2008

94

7.
CCSDS Packet Encapsulation Protocol

7.1. Overview

7.1.1. Purpose

The CCSDS Packet Encapsulation Protocol has been designed to encapsulate a CCSDS Packet

into a SpaceWire packet, transfer it from an initiator to a target across a SpaceWire network, ex-

tract it from the SpaceWire packet and pass it to a target user application. This protocol does not

provide any means for ensuring delivery of the packet. An optional mechanism to route the

packets to different communication channels at the target user is provided.

The CCSDS Packet Protocol is defined in the following documents:

 CCSDS 133.0-B-1 Blue Book, CCSDS Packet Protocol,

 CCSDS 713.0-B-1 Blue Book, Space Communications Protocol Specification - Network

Protocol (SCPS-NP),

 CCSDS 133.1-B-1 Blue Book, Encapsulation Service,

 Internet Protocol STD 5, September 1981 [RFC 791, RFC950, RFC 919, RFC 922, RFC

792, RFC 1112],

 CCSDS 135-B-1 Blue Book, Space Link Identifiers.

7.1.2. Guide to clause 7

Specification of the fields used in the CCSDS Packet Encapsulation Protocol packets is given in

sub-clause 7.2. The format of these packets is then given in sub-clause 7.3. The operation of the

CCSDS Packet Encapsulation Protocol is described in sub-clause 7.4.

7.2. CCSDS Packet Encapsulation Protocol fields

7.2.1. Target SpaceWire Address field

a. The Target SpaceWire Address field shall comprise zero or more data characters forming the

SpaceWire address which is used to route the CCSDS Packet Encapsulation Protocol packet

to the target.

NOTE The Target SpaceWire Address is stripped off by the time the

packet reaches the target.

b. SpaceWire path addressing and regional addressing may be used.

c. The Target SpaceWire Address field shall not be used when a single logical address is being

used for routing the CCSDS Packet Encapsulation Protocol packet to the target.

NOTE In this case the CCSDS Packet Encapsulation Protocol packet is

routed to the target by the Target Logical Address contained in

the Target Logical Address field.

ECSS-E-50-11A

Draft 0.8, 26 May 2008

95

7.2.2. Target Logical Address field

Target Logical Address field shall be an 8-bit field that contains a logical address of the
target.

NOTE The Target Logical Address field is normally set to a logical ad-

dress recognised by the target.

NOTE If the target does not have a specific logical address then the

Target Logical Address field can be set to the default value 254

(0xFE).

NOTE A target can have more than one logical address.

7.2.3. Protocol Identifier field

a. The Protocol Identifier field shall be an 8-bit field that contains the Protocol Identifier.

b. The Protocol Identifier field shall be set to the value 2 (0x02) which is the Protocol Identifier

for the CCSDS Packet Encapsulation Protocol.

7.2.4. User Application 1 field

a. The User Application field 1 shall be an 8-bit field that is set to 0x00.

b. The User Application 1 field may be set according to one of the following options:

1. Option A Virtual Channels:

(a) The User Application 1 field may be used as a transaction identifier (i.e. set to any

value) that is used to identify a particular packet.

7.2.5. User Application 2 field

a. The User Application 2 field shall be an 8-bit field that is set to 0x00.

b. The User Application 2 field may be set according to one of the following options:

1. Option A Virtual Channels:

(a) If the target supports virtual channels, the User Application 1field shall be an 8-bit

field that is set to a virtual channel number that is supported by the target.

7.2.6. CCSDS Packet field

a. The CCSDS Packet field shall be a variable length field that contains the CCSDS Packet.

b. The first byte of the CCSDS Packet field shall be the first byte of the CCSDS Packet.

c. The byte order of the CCSDS Packet field shall be the same as the CCSDS Packet.

7.3. CCSDS Packet Encapsulation Protocol format

7.3.1.1. Fields

The CCSDS Packet Encapsulation Protocol packet shall contain the fields shown in
Figure 7-1.

ECSS-E-50-11A

Draft 0.8, 26 May 2008

96

Target Logical Address Protocol Identifier User Application 1 User Application 2

CCSDS Packet

(First Byte)
CCSDS Packet CCSDS Packet CCSDS Packet

CCSDS Packet CCSDS Packet

CCSDS Packet
CCSDS Packet

(Last Byte)
EOP

First byte transmitted

Last byte transmitted

Target SpW Address Target SpW Address

Figure 7-1 Encapsulated CCSDS Packet Format

7.3.1.2. Target SpaceWire Address field

The Target SpaceWire Address field shall be as defined in sub-clause 7.2.1.

7.3.1.3. Target Logical Address field

The Target Logical Address field shall be as defined in sub-clause 7.2.2.

7.3.1.4. Protocol Identifier field

The Protocol Identifier field shall be as defined in sub-clause 7.2.3.

7.3.1.5. User Application 1 field

The User Application 1 field format shall be as defined in sub-clause 7.2.4.

7.3.1.6. User Application 2 field

The User Application 2 field format shall be as defined in sub-clause 7.2.5.

7.3.1.7. CCSDS Packet field

The CCSDS Packet field format shall be as defined in sub-clause 7.2.6.

7.3.1.8. EOP character

The end of the CCSDS Packet Encapsulation Protocol packet shall be indicated by an
EOP character.

7.4. CCSDS Packet Encapsulation Protocol Action

7.4.1. Overview

The normal sequence of actions for a CCSDS Packet Encapsulation Protocol packet transfer is il-

lustrated in Figure 7-2.

ECSS-E-50-11A

Draft 0.8, 26 May 2008

97

1. Send Packet

3. Packet

Indication

2. Transfer

Packet

Initiator Target

Figure 7-2 CCSDS Packet Encapsulation Protocol Packet Transfer

7.4.2. Send request

a. The CCSDS Packet Encapsulation Protocol packet transfer shall begin when an initiator user

application requests to send a CCSDS Packet Encapsulation Protocol packet (Send Request).

b. The initiator user application shall pass the following information to the initiator:

1. Target SpaceWire Address

2. Target Logical Address

3. CCSDS Packet

7.4.3. Transfer packet

a. In response to the send request the initiator shall encapsulate the CCSSDS Packet into a

SpaceWire packet as described in sub-clause 7.3 and send it across the SpaceWire network to

the target (Transfer Packet).

NOTE The Target SpaceWire Address and Target Logical Address are

used to route the command packet to the target.

7.4.4. Packet indication

a. When a SpaceWire packet is received at the target and the Protocol Identifier field is 0x02

the packet shall be regarded as a CCSDS Packet Encapsulation Protocol packet.

b. If the CCSDS Packet Encapsulation Protocol packet arrives at the target containing more

than four bytes and is terminated by an EOP, the CCSDS Packet shall be extracted from the

SpaceWire packet and passed to the target user application.

c. If the CCSDS Packet Encapsulation Protocol packet arrives at the target containing less than

five bytes and is terminated by an EOP, the target user application should be informed that an

Encapsulated CCSDS Packet has arrived which is too short, i.e. it does not contain a CCSDS

Packet.

d. If the CCSDS Packet Encapsulation Protocol packet arrives at the target terminated by an

EEP, the available CCSDS Packet information (if any) shall be extracted from the CCSDS

Packet Encapsulation Protocol packet and passed to the target user application and the appli-

cation informed that the CCSDS Packet Encapsulation Protocol packet was terminated by an

EEP.

e. The User Application fields shall be ignored by the target unless one of the following options

is implemented:

1. Option A Virtual Channels:

(a) If the target supports virtual channels it may use the User Application 1 field to iden-

tify the specific packet.

ECSS-E-50-11A

Draft 0.8, 26 May 2008

98

(b) If the target supports virtual channels, the User Application 2 field shall be used to

route the Encapsulated CCSDS Packet to the target user application.

7.5. Annex Example Service Interface Specification for CCSDS Packet
Encapsulation Protocol

Example service interface specifications for the CCSDS Packet Encapsulation Protocol are pro-

vided in this section.

7.5.1. CCSDS Packet Transfer Service

The service primitives associated with this service are:

a) CCSDS_PACKET.send;

b) CCSDS_PACKET.indication.

7.5.2. CCSDS_PACKET.send

7.5.2.1. Function

At the initiator, the CCSDS Packet Transfer service user passes a CCSDS_PACKET.send primi-

tive to the service provider to request that a CCSDS Packet be transferred to the user at the target

across the SpaceWire network.

7.5.2.2. Semantics

The CCSDS_PACKET.send primitive provides parameters as follows:

CCSDS_PACKET.send (CCSDS Packet, Target SpaceWire Address, Target Logical Address)

7.5.2.3. When Generated

The CCSDS_PACKET.send primitive is passed to the service provider to request it to send the

CCSDS Packet.

7.5.2.4. Effect On Receipt

Receipt of the CCSDS_PACKET.send primitive causes the service provider to transfer the

CCSDS Packet.

7.5.2.5. Additional Comments

The CCSDS_PACKET.request primitive is used to transfer CCSDS Packets across the Space-

Wire network along the router defined by the Target SpaceWire Address and Target Logical Ad-

dress parameters.

7.5.3. CCSDS_PACKET.indication

7.5.3.1. Function

At the target, the service provider passes a CCSDS_PACKET.indication to the CCSDS Packet

Service user to deliver a Packet.

7.5.3.2. Semantics

The CCSDS_PACKET.indication primitive provides parameters as follows:

CCSDS_PACKET.indication (CCSDS Packet, Length, Error)

7.5.3.3. When Generated

ECSS-E-50-11A

Draft 0.8, 26 May 2008

99

The CCSDS_PACKET.indication primitive is passed from the service provider to the CCSDS

Packet Service user at the target to deliver a CCSDS Packet.

7.5.3.4. Effect On Receipt

The effect of receipt of the CCSDS_PACKET.indication primitive by the CCSDS Packet Service

user is undefined.

7.5.3.5. Additional Comments

The CCSDS_PACKET.indication primitive shall be used to deliver CCSDS Packets to the

CCSDS Packet Service user at the target.

