
11

SpaceFibre

Steve Parkes, Chris McClements,
Martin Dunstan, Peter Mendham

Space Technology Centre
University of Dundee

ESA Study Manager: Martin Suess

Agenda

SpaceFibre requirements
Lessons learnt from SpaceWire
Analysis of high speed serial interfaces
SpaceFibre CODEC architecture
SpaceFibre/SpaceWire Router
SpaceFibre demonstration system
SpaceFibre demonstration

22

33

SpaceFibre
CODEC

SpaceFibre Requirements

Faster than SpaceWire (> 1 Gbit/s)
Further than SpaceWire (100 m)
Lighter than SpaceWire
As simple as SpaceWire
Backwards compatible with SpaceWire
Galvanically isolated

44

Lessons Learnt from SpaceWire

Cable Mass
– 87 g/m approximately
– Bi-directional
– Data strobe signalling

No need for PLL

– Differentially encoded
Good EMC performance

– 8 signal wires
– Individual screens on pairs
– Overall screen
– High cable mass

To reduce cable mass need fewer wires
55

Lessons Learnt from SpaceWire

Data Rate
– Limited by

Cable attenuation
Skew between data and strobe signals

– Longer cables
Exacerbate these problems

– SpaceWire practically limited to
200 Mbits/s
Up to 10m length

Faster links require different signalling
scheme

66

Lessons Learnt from SpaceWire

Character Sizes
– FCT, EOP, EEP 4-bits
– Null 8-bits
– Data character 10-bits
– Time-code 14-bits

Variable character size
– Makes CODEC design more difficult

Keep characters all the same size

77

Lessons Learnt from SpaceWire

Parity coverage

Parity bit to cover just one character
88

P 0 X X XXXX XX P 01 1 P 01 0

Data Character EOP FCT

Parity
Coverage

Parity
Coverage

Lessons Learnt from SpaceWire

Transmitted DC Component
– SpaceWire characters

All possible bit patterns used
Coding not DC balanced
Degrades transmission characteristics
Makes them broadband
Prevents AC coupling

Use DC balanced signalling scheme

99

Lessons Learnt from SpaceWire

Galvanic Isolation
– No method of galvanic isolation provided in

SpaceWire
– Various techniques possible
Support galvanic isolation

1010

Lessons Learnt from SpaceWire

Matched Impedance Connectors
– 9-pin MDM connector
– Not impedance matched
– Becomes a problem for high data rates
– Alternative impedance matched connectors
– Have been developed
Use impedance matched connector

1111

Lessons Learnt from SpaceWire

Initialisation Protocol
– SpaceWire does not use full handshake

Part timing
Part handshake

– Allowed backwards compatibility with IEEE1355
devices

– Can lead to false initialisation due to noise
– And erroneous flow of data
– External bias resistors help with this

A full handshake protocol is preferable

1212

1313

Requirements
High data rate
– 2.5 G bits/s plus
– Over fibre and copper

Fibre optic communications
– 100 m plus

Copper
– Short length (1m)

Galvanically isolated
Light weight cables
Low power per Gbit/s
Radiation tolerant
Rugged
Able to integrate with SpaceWire network

1414

Analysis of Existing Protocols

Gigabit Ethernet
Fibre Channel
Serial ATA
PCI Express
Infiniband
HyperTransport

SpaceFibre Approach
Use the lower level of Fibre Channel as the
basis for SpaceFibre
– Bit and word synchronisation
– 8B/10B encoding
– Ordered Sets

Scrambling of data should be included for
EM emission reduction
Frame concept used in Fibre Channel, PCI
Express and Serial ATA should be adopted
Fine grained power management of the link
interfaces should be supported
Virtual channel and traffic class concepts of
PCI Express should be adopted1515

Compatibility with SpaceWire

Compatibility with SpaceWire is a key issue
Wanted to take advantage of existing
SpaceWire equipment
Must be able to integrate with SpaceWire
system
Various options considered
Decided on:
– Compatibility at SpaceWire packet level
– Use a bridge between SpaceWire and

SpaceFibre
– Multiplexes many SpaceWire links over

SpaceFibre
1616

Architecture Overview

1717

Virtual Channels
And Flow Control

Framing

Encoding and
Link Control

Serialisation

SpaceFibre Medium

SpaceFibre
CODEC

User Interface

Architectural Overview

Virtual Channel and Flow Control:
– Quality of service channels
– Flow control over SpaceFibre link

Framing:
– Framing data
– inserting user ordered sets

Encoding and Link Control:
– Encoding/decoding data into symbols
– Link initialisation

Serialisation:
– Serialising and de-serialising SpaceFibre symbols

1818

Overall Architecture

1919

INIT_1,
INIT_2

POWER
MAN. OS

8B/10B
ENCODER

SERIALISER

DRIVER RECEIVER

DE-SERIALISER

8B/10B
DECODER

SYMBOL & OS
SYNC

RECEIVE
ELASTIC
BUFFER

DATA
SCRAMBLER

TX_DATA_FRAME

CLOCK
RECOVERY

User Interface

MUX

MUX

MUX

MUX

MUX

IDLE FRAME

TX_ORD_SET

LINK LAYER
ORDERED SET
EXTRACTION

IDLE FRAME
REMOVAL

DE-MUX

RX_ORD_SET

DATA
DE- SCRAMBLER

RX_DATA_FRAME

LINK
INITIALISATION
AND POWER
MANAGEMENT

RECEIVE
SYNC
STATE MCH.

CD = Comma Detect
CR = Comma Realignment

INVALID
DATA

CD
CR

LOST
SYNC

10-bit
Interface to PHY

32-bit Data + 4-bit K
interface to PHY

MUX

DATA & USER OS

IDLE

MUX

SKIP
SKIP
INSERTION
COUNTER

Symbol & Ordered Set
Synchronisation

Serialisation/
De-Serialisation

EMC Mitigation

Link Initialisation and
Power Management

Data Rate Adjustment

8B/10B Encode/Decode

Data Frames
& User OS

8B/10B
ENCODER
8B/10B
ENCODER
8B/10B
ENCODER

8B/10B
DECODER
8B/10B
DECODER
8B/10B
DECODER

MUX

Line Driver/
Receiver

Serial Interface

10 10

40

40

32+4

32+4

32+4

32+4

32+4 32+4

3232+4 32+4 32

32

MUX

SOF EOF
Framing

STRIP FRAME
DELIMITERS

Parallel Loop-Back

Serial Loop-Back

INVERSION

10

SpaceFibre CODEC Layers

User interface
EMC mitigation
Framing
Link initialisation and power management
Data rate adjustment
8B/10B encoding and decoding
Parallel loop-back
Symbol and ordered set synchronisation
Serialisation and de-serialisation
Serial loop-back
Line driver and receiver2020

Serialiser / De-serialiser

2121

DRIVER

MUX

RECEIVER

10-bit
Interface to PHY

Serial Interface

SERIALISER

10

Serialisation/
De-Serialisation

Line Driver/
Receiver

Serial Loop-Back

10

INVERSION

DE-SERIALISERCLOCK
RECOVERY

MUX

10

Line Drivers & Receivers

CML
– Current mode logic
– Differential

Low EM emissions

– High speed

2222

Receive Clock Recovery

Bit synchronisation

2323

Voltage
Controlled
Oscillator

Phase
Detector

Input Signal
(data with

embedded clock)

Reference
Clock

Recovered
Bit Clock

Loop
Filter

Phase
Difference

Filtered
Control
Voltage

Changing Polarity

To simplify PCB layout
Include change of polarity on receiver input
Detect polarity
Swap polarity if required

2424

Invert

+

-
Receiver

Input

Loopback

Operating Modes:
– Normal operation
– Internal parallel loopback
– Internal serial loopback

TX
CODING

TX
SERIALISER

RX
DECODING RX

DESERIALISER

MUX
MUX

TXDATA

RXDATA

Parallel
Loopback

TXP/TXN

RXP/RXN

Serial
Loopback

Encoder / Decoder

2626
CD = Comma Detect
CR = Comma Realignment

RECEIVE SYNC
STATE MCH.

CD
CR

10-bit
Interface to PHY

Symbol & Ordered Set
Synchronisation

8B/10B Encode/Decode

MUX

10

SYMBOL &
OS SYNC

10

40

8B/10B
DECODER

MUX

8B/10B
DECODER
8B/10B
DECODER

8B/10B
DECODER

32+4

8B/10B
ENCODER
8B/10B
ENCODER
8B/10B
ENCODER

8B/10B
ENCODER

40

32+4

Parallel Loop-Back

27

Benefits of 8B/10B Coding

Zero DC bias: same number of ones and
zeros
8-bit data codes + some control codes
– Only codes with

5 ones and 5 zeros
4 ones and 6 zeros
6 ones and 4 zeros

– Are used
– Characters with uneven ones and zeros have two

possible codings to preserve DC bias

28

Benefits of 8B/10B Coding

Ensures sufficient bit transitions for clock
recovery
– No more than 5 consecutive ones or zeros

All characters encoded with 10-bits giving
constant bit and character rates, simplifying
transmitter and receiver
Unused codes can be used to detect link
errors

2929

8B/10B Encoder

5B/6B
Encoder

3B/4B
Encoder

Running
Disparity

5 ls-bits 6-bits

3 ms-bits 4-bits

8-bit Data
Input

Control/Data
Input (K/D)

10-bit
Encoded
Output5B/6B Disparity

3B/4B Disparity

30

8B/10B Notation

7 6 5 4 3 2 1 0

H G F E D C B A

H G F E D C B A

H G FE D C B A

ms ls

D/K

D/K

D/K

Data/
Control

ASCII Character

8B/10B Notation

Sub-Blocks

Swap Sub-Blocks

Decimal values D/K XX Y

Notation D/KXX.Y

8B/10B Notation Examples

3131

1 0 1 0 1 1 0 0

1 0 1 0 1 1 0 0

1 0 1 0 1 1 0 0

1 0 10 1 1 0 0

D

D

D

D 12 5

D12.5

1 0 1 1 1 1 0 0

1 0 1 1 1 1 0 0

1 0 1 1 1 1 0 0

1 0 11 1 1 0 0

K

K

K

K 28 5

K28.5

3232

Part of 5B/6B Encoding Table
Input Output

Data Input Data bits 43210
(EDCBA)

Current Running
Disparity -ve

abcdei

Current Running
Disparity +ve

abcdei
D00.y 00000 100111 011000

D01.y 00001 011101 100010

D02.y 00010 101101 010010

D03.y 00011 110001
D04.y 00100 110101 001010

D05.y 00101 101001

D06.y 00110 011001
D07.y 00111 111000 000111

D08.y 01000 111001 000110

D09.y 01001 100101

D10.y 01010 010101

3333

3B/4B Encoding
Input Output

Data Input Data bits 765
(HGF)

3B/4B
Disparity -ve

fghj

3B/4B
Disparity +ve

fghj
D/Kxx.0 000 1011 0100
Dxx.1 001 1001
Kxx.1 001 0110 1001
Dxx.2 010 0101
Kxx.2 010 1010 0101

D/Kxx.3 011 1100 0011
D/Kxx.4 100 1101 0010
Dxx.5 101 1010
Kxx.5 101 0101 1010
Dxx.6 110 0110
Kxx.6 110 1001 0110
Dxx.7 111 1110/0111 0001/1000
Kxx.7 111 0111 1000

3434

8B/10B Control (K) Codes
Input Output

Special Character
Name

Current Running
Disparity -ve

Current Running
Disparity +ve

K28.0 001111 0100 110000 1011
K28.1 001111 1001 110000 0110
K28.2 001111 0101 110000 1010
K28.3 001111 0011 110000 1100
K28.4 001111 0010 110000 1101
K28.5 001111 1010 110000 0101
K28.6 001111 0110 110000 1001
K28.7 001111 1000 110000 0111
K23.7 111010 1000 000101 0111
K27.7 110110 1000 001001 0111
K29.7 101110 1000 010001 0111
K30.7 011110 1000 100001 0111

35

8B/10B Comma Pattern

Three control codes contain a unique 7-bit
pattern
0011111 or 1100000
Does not occur in data codes
Cannot be produced by combining any data
code or other control code
Pattern is known as the comma pattern
Widely used for character synchronisation

Commas and character alignment
Commas are used to detect the character
boundaries in the serial bit stream
Comma sequences are unique seven bit
sequences
Plus Comma
– 0011111

Negative Comma
– 1100000

Example

01001100111110010101011100

Comma
Start of Character

De-serialiser and Character Alignment

De-serialiser
Bit Stream

Register

Register

20:10 Mux

Comma
Detect10 10

Aligned 10B Code

Start of
Character

Comma
Detect

Alignment after De-serialisation

De-serialiser and Character Alignment

De-serialiser
Bit Stream

Register

Comma
Detect

Aligned 10B Code

Start of
Character

Comma
Detect

Bit Counter

Reset

Alignment during De-serialisation

RX Synchronisation State Machine

3939

Comma
realignment

Ready Four sequential
valid symbols

Less than four
sequential

valid symbols

Check
Sync

Comma
rx’ed

No comma
rx’ed

Not lost sync

Lost sync

Symbol
Sync

LockedNot Locked

Invalid
symbol

Not Locked

Bit
Sync

Reset

Not Locked

Not Locked

Re-Initialisation after Loss of Sync

4040

Ready

CheckSync

SymbolSync

CheckSync

Ready

Lost sync
INIT_1

Ready

Active Active

Initialise
Initialise

Ready

End A End B

Ordered Sets

A group of four characters
– Starting with a comma (K28.5)

Several types of ordered set:
– Link-level ordered sets
– Power management ordered sets
– Reset ordered sets
– Framing ordered sets
– Flow control ordered sets
– User ordered sets

4141

Link Level Ordered Sets
Link Layer Ordered Sets

Name Ordered Set Function

SKIP Comma, SKIP, Count MS, Count LS

K28.5, D0.0, cnt_ms, cnt_ls

Send every N ordered sets or data words to

support receiver elastic buffer operation. N

must be less than or equal to 5000.

IDLE Comma, IDLE, 0, 0

K28.5, D0.1, D0.0, D0.0

Sent whenever there is no data frame, idle

frame or other ordered set to send. It keeps the

link active.

INIT_1 Comma, INIT, 1, Speed

K28.5, D10.2, D0.1, speed

Send as part of the initialisation handshake. If

received at any other time causes a re-

initialisation.

INIT_2 Comma, INIT, 2, Speed

K28.5, D10.2, D0.2, speed

Send as part of the initialisation handshake.

4242

Encoder / Decoder

4343
CD = Comma Detect
CR = Comma Realignment

8B/10B
ENCODER

8B/10B
DECODER

SYMBOL &
OS SYNC

MUX

RECEIVE SYNC
STATE MCH.

CD
CR

10-bit
Interface to PHY

Symbol & Ordered Set
Synchronisation

8B/10B Encode/Decode
8B/10B
ENCODER
8B/10B
ENCODER

8B/10B
ENCODER

8B/10B
DECODER
8B/10B
DECODER

8B/10B
DECODER

MUX

10 10

40

40

32+432+4

Parallel Loop-Back

Data Rate Adjustment

4444

IDLE

SKIP
SKIP

INSERTION
COUNTER

32+4

MUX

32+4

To Encoder

Data & OS to Tx

RECEIVE
ELASTIC
BUFFER

32+4

32+4

From Encoder

Rx’ed Data & OS

Receive Elastic Buffer

Receive clock and system clock will be at
slightly different frequencies
Receive elastic buffer makes up for these
differences

Read
Local CLK

Write
Receive CLK

Nominal condition buffer half-full

Read
Local CLK

Receive Elastic Buffer
When buffer less than half full
Local CLK is faster than Receive CLK
Skip characters are read but read pointer not
incremented (once only)
Effect is to add Skips to the buffer

Read
Local CLK

Write
Receive CLK

Skip

Buffer less than half full (emptying)

Receive Elastic Buffer

When buffer more than half full
Local CLK is slower than Receive CLK
Skip characters are skipped: read pointer
incremented past them
Effect is to remove skips from buffer

Read
Local CLK

Write
Receive CLK

Skip

Buffer more than half full (filling up)

Read
Local CLK

Read
Local CLK

Receive Elastic Buffer

Must ensure that there are sufficient Skips in
the data stream
So that they can be removed if necessary
Frequency of Skips depends on:
– Size of elastic buffer
– Maximum frequency difference between

Local CLK: System clock at this end of link
Receive CLK: System clock at other end of link
One skip every 20000 symbols

Link Initialisation and Power Management

4949

32-bit Data + 4-bit K
interface to PHY

INIT_1,
INIT_2

POWER
MAN. OS LINK

INITIALISATION
AND POWER
MANAGEMENT

MUX

32+4

32+4

TX DATA & OS

To Skip Insertion

LINK LAYER
ORDERED SET
EXTRACTION

RX DATA & OS

32+4

32+4

From Rx Elastic Buffer

Link Initialisation State Machine

5050

WarmReset
ColdReset

FailedInit

NotConnected
Send Init_1

AutoStart

Init_Reset Power_On_Reset

Auto

#Auto

Start +
2xGot_Init_1

Changing Polarity
Invert Rx Polarity 4xInit_1_WrongPolarity

NearEndConnected
Send 16xInit_2

FarEndConnected
Send 16xInit_2

Start.
After10us

#Start.#Auto
Timeout(20us)

8xGot_Init_28xGot_Init_1

Lost_Sync

#Start.#Auto

WarmReset

Connected
Send 8xIDLE
Connected

WarmReset

FailedInit

#Start.#Auto

Lost_Sync +
Timeout(20us)

WarmReset#Start.#Auto

FailedInit

Lost_Sync

Active
Connected

8xGot_Init_2

WarmReset#Start.#Auto

NotConnection

Lost_Sync + Got_Init_1

ChangingSpeed

WarmReset

4xInit_1_Wrong_Polarity

Link Initialisation State Machine

5151

WarmReset

Init_Reset

Start .
After10us

8xGot_Init_28xGot_Init_1

Not Start . Not Auto

8xGot_Init_2

NotConnected
Send Init_1

NearEndConnected
Send 16xInit_2

FarEndConnected
Send 16xInit_2

Connected
Send 8xIDLE
Connected

Initialisation from Auto-Start

5252

Link Start

NotConnected

Rx’d 8x Init 1

Reset

End A End B

NotConnected

Reset

Listen

Auto_Start

Rx’d 8x Init 1

Init 1

Init 1

Init 2NearConnected
Init 2

NearConnected

Rx’d 8x Init 2Rx’d 8x Init 2 IDLE
Connected

IDLE

ActiveActive

Connected

Sync‘d

Initialisation through FarConnected

5353

Link Start

NotConnected

Reset

End A End B

Reset

Listen

Auto_Start

Rx’d 8x Init 2

NotConnectedInit 1

FarConnected

Init 1

Init 2

IDLE

Rx’d 8x Init 1

NearConnected

Rx’d 8x Init 2
Connected Connected

IDLE

ActiveActive

Sync‘d

Init 2

Initialisation when both ends Link Start

5454

Link Start
Init 1

NotConnected

Reset

Rx’d 8x Init 1

End A End B

NotConnected

Reset
Link Start

Rx’d 8x Init 1

Init 1

Init 2Init 2
NearConnected

IDLE IDLE

NearConnected

Rx’d 8x Init 2Rx’d 8x Init 2
Connected Connected

ActiveActive

EMC Mitigation and Data Framing

5555

32-bit Data + 4-bit K
interface to PHY

Data Frames
& User OS

DE-MUX

RX_ORD_SET

DATA & USER OS

32+4

32+4

TX_DATA_FRAME

MUX

IDLE FRAME

32

32

DATA
SCRAMBLER

MUX

SOF EOF FramingSTRIP FRAME
DELIMITERS

RX_DATA_FRAME

32

IDLE FRAME
REMOVAL

EMC Mitigation

DATA
DE- SCRAMBLER

MUX

TX_ORD_SET

32+4

32+4

DATA & USER OS

Frames

Data sent in frames
Frame defined by
– Start of Frame
– Data
– CRC
– End of Frame

When no data to send idle frame sent

Data Framing Ordered Sets

5757

Data Framing Ordered Sets

Name Ordered Set Function

SDF Comma, SDF, VC, Word Count

K28.5, D0.2, VC, Len

Start of Data Frame.

Contains type of frame, virtual channel,

number and length of frame .

SIF Comma, SIF, VC, Word Count

K28.5, D0.3, VC , Len

Start of Idle Frame.

Contains type of frame, virtual channel

number and length of frame.

EOF Comma, EOF, MS, LS

K28.5, D0.4, crc_ms, crc_ls

End of Frame.

Contains for frame.

EEF Comma, EEF, MS, LS

K28.5, D0.5, crc_ms, crc_ls

Error End of Frame.

Indicates that the frame was terminated

early for some reason.

Data Frame Format

31 24 23 16 15 8 7 0

COMMA SDF VC Word Count

DATA 1 MS DATA 1 DATA 1 DATA 1 LS

DATA 2 MS DATA 2 DATA 2 DATA 2 LS

...

DATA DATA N DATA N DATA N LS

COMMA EOF CRC_MS CRC_LS

5858

Idle Frame Format

31 24 23 16 15 8 7 0

COMMA SIF 0 255

IDLE 1 MS IDLE 1 IDLE 1 IDLE 1 LS

IDLE 2 MS IDLE 2 IDLE 2 IDLE 2 LS

...

IDLE IDLE N IDLE N IDLE N LS

COMMA EOF CRC_MS CRC_LS

5959

Idle word is 0x00000000

Frames

Up to 255 32-bit data words in a data frame
Up to 255 32-bit idle words in an idle frame
Idle frame sent when there is no data to send
Idle frame terminated as soon as there is
more data to send

6060

CRC

16-bit CRC
Transmitter
– CRC unit generates CRC
– Recognises SOF, EOF
– Computes 2-byte CRC on data between SOF and

EOF
– Inserts CRC in EOF
– Modifies EOF to generate correct running

disparity
Receiver
– Checks CRC

EMC Mitigation and Data Framing

6262

TX_DATA_FRAM
E32

IDLE FRAME

MUX
32

DATA
SCRAMBLER

MUX

SOF EOF

TX_ORD_SET

32+4

MUX

32+4

DATA & USER
OS

Scrambler

Spread the spectrum of data / idle frames
By convolution
– with a broad spectrum signal
– i.e. a noise or random number source

Convolution in frequency domain is
multiplication in time domain.
Multiplication of a bit sequence can be done
by XOR

6363

Scrambler

Bit wise multiplication (XOR) of data with a
sequence of random numbers produced from
a scrambling polynomial
The scrambling polynomial is
G(x) = X16 + X5 + X4+ X3+ 1

Seed for scrambler is 0xffff
Re-seeded at the start of every new data or
idle frame
Data field of data frames and idle frames
scrambled prior to transmission

6464

De-Scrambling

De-convolve known “noise” from received
signal
De-convolution in frequency domain is
division in time domain
Multiplication and division give the same
result in bit-wise boolean algebra
0 represents -1, 1 represents +1
-1 x -1 = +1 -1 / -1 = +1 0 XOR 0 = 0 INV = 1
-1 x +1 = -1 -1 / +1 = -1 0 XOR 1 = 1 INV = 0
+1 x -1 = -1 +1 / -1 = -1 0 XOR 1 = 1 INV =0
+1 x +1 = +1 +1 / +1 = +1 1 XOR 1 = 0 INV = 1

Therefore XOR the incoming bit stream with
the scrambling polynomial to recover data

6565

Scrambler/De-Scrambler

6666

Random Number GeneratorRandom Number Generator

D Q D Q D Q D Q D Q

D Q D Q D Q D Q D Q D Q D Q D Q

D Q

D Q D Q

XOR XOR XOR

D9 D11D10 D12 D13 D14 D15D6 D8D7

D3 D4 D5D0 D2D1

Bit Stream InputBit Stream Input

D Q D Q D Q D Q D Q D Q D Q D Q

XOR

Data In

CLK

D7 D6 D4D5 D3 D2 D1 D0

Data
Out

CLK

EMC Mitigation and Data Framing

6767

DATA
SCRAMBLER

TX_DATA_FRAME

MUX

MUX

IDLE FRAME

TX_ORD_SET

IDLE FRAME
REMOVAL

DE-MUX

RX_ORD_SET

DATA
DE- SCRAMBLER

RX_DATA_FRAME

32-bit Data + 4-bit K
interface to PHY

DATA & USER OS

EMC Mitigation

Data Frames
& User OS

32+4 32+4

3232+4 32+4 32

32

MUX

SOF EOF FramingSTRIP FRAME
DELIMITERS

DATA & USER OS

Transmit Data Frame Interface

68

Transmit Data Frame Interface

Signal Dir Function

User_Txdata(31:0) In User frame data.

User_Txdata_Rdy In When asserted a complete frame is

ready to transmit. The lowest order byte

of the first User_Txdata word holds the

frame length and forms part of the start

of frame ordered set.

User_Txdata_Read Out Read user frame data into the

SpaceFibre CODEC for transmission.

Transmit Ordered Set Interface

6969

Transmit Ordered Set Interface

Signal Dir Function

User_Tx_Ord_Set(31:0) In User ordered set data. Bits 31:24 should

be set to K28.5 as the ordered set must

have a comma code as the most

significant byte.

User_Tx_Ord_Set_Rdy In When User_Tx_Ord_Set_Rdy is asserted

then the User_Tx_Ord_Set data is valid.

User ordered sets are transmitter by the

SpaceFibre CODEC when the link

initialisation state machine has connected

User_Tx_Ord_Set_Read Out Asserted when an ordered set has been

read into the SpaceFibre CODEC for

transmission.

Receive Data Frame Interface

70

Receive Data Frame Interface

Signal Dir Function

User_Rxdata(31:0) Out Received frame data.

User_Rxdata_SOF Out When asserted the frame data on User_Rxdata

is a start of frame

User_Rxdata_EOF Out When asserted the frame data on User_Rxdata

is an end of frame

User_Rxdata_Valid Out When asserted the User_Rxdata,

User_Rxdata_SOF and User_Rxdata_EOF

outputs are valid.

User_Rx_Out_Of_Frame_

Error

Out Asserted when a character is received when not

expected.

User_Frame_Length_Error Out Asserted when a frame is terminated with an

end of frame ordered set before the complete

frame length has been received.

Receive Ordered Set Interface

71

Receive Ordered Set Interface

Signal Dir Function

User_Rx_Ord_Set(31:0) Out Received ordered set data.

User_Rx_Ord_Set_Valid Out When asserted the

User_Rx_Ord_Set output is valid.

Architecture Overview

72

Virtual Channels
And Flow Control

Framing

Encoding and
Link Control

Serialisation

SpaceFibre Medium

SpaceFibre
CODEC

User Interface

Virtual Channels

Virtual channel
– Unidirectional data connection
– Between pair of buffers

Source buffer
Destination buffer

VC source buffer sends data to VC
destination buffer
– With same VC number

Up to 256 virtual channels supported
Used for:
– Multiplexing data over a link
– Quality of Service

7373

Flow Control

Flow control
– From source VC buffer
– To destination VC buffer

Only send data frame
– When destination VC buffer has room

Destination VC buffer sends Flow Control OS
– When room from one more frame
– FCOS reserves space in destination VC buffer

Flow Control OS contains
– VC number
– Sequence number

7474

Flow Control Ordered Set

7575

Flow Control Ordered Set

Name Ordered Set Function

FCT Comma, FCT, Sequence No., Channel No.

K28.5, D0.6, Seq, Ch

Flow Control Token

Indicates that the receive buffer for a

specific virtual channel has room for

another complete data frame.

Sequence number increments for each

new FCT sent related to a specific

channel.

Channel number identifies the virtual

channel which this FCT is for.

7676

SpaceFibre/SpaceWire Router

7777

SpaceWire-SpaceFibre Router

SpaceWire
Links

SpaceWire-SpaceFibre Router

Frame Buffer

Frame Buffer

Frame Buffer

Frame Buffer

SpaceFibre
Port

Mux/
Demux

SpaceFibre
Link

SpaceWire
Router

1

2

3

4

5

6

7

8

SpaceWire Packet Mapping

FLG
– Start of SpW packet
– Continuation of SpW packet
– End of SpW packet and type

Packet count
– Number of SpW data characters in frame7878

Packet CountFLG

SpaceFibre/SpaceWire Router

Implemented using Xilinx Virtex-4
Uses Rocket IO
– SerDes
– Bit Synchronisation
– 8B/10B Encoding
– Symbol Synchronisation
– Receive Elastic Buffer

Custom configuration
Everything else built in FPGA fabric

7979

8080

Photo of test unit

Results
Operates at 2 Gbit/s
Link Initialisation
Virtual Channels
Flow Control
Fibre optics
SpaceWire over SpaceFibre
– Four SpaceWire links multiplexed over

SpaceFibre
– In both directions
– Virtual channels used to differentiate SpaceWire

links
– Transparent transfer of SpaceWire packets over

SpaceFibre8181

SpaceFibre Requirements

Faster than SpaceWire (> 1 Gbit/s)
– Yes

Further than SpaceWire (100 m)
– Yes

Lighter than SpaceWire
– Yes

As simple as SpaceWire
– Almost

Backwards compatible with SpaceWire
– Yes

Galvanically isolated
– Yes8282

8383

Conclusions

Appropriate SpaceFibre CODEC designed
– Meets SpaceFibre requirements

Demonstration system built and tested
Initial draft of SpaceFibre standard written
Future work
– Virtual channels and flow control
– Quality of service
– Power management
– Speed switching
– Consolidation of standard
– VHDL implementation and test

	SpaceFibre�
	Agenda
	SpaceFibre�CODEC
	SpaceFibre Requirements
	Lessons Learnt from SpaceWire
	Lessons Learnt from SpaceWire
	Lessons Learnt from SpaceWire
	Lessons Learnt from SpaceWire
	Lessons Learnt from SpaceWire
	Lessons Learnt from SpaceWire
	Lessons Learnt from SpaceWire
	Lessons Learnt from SpaceWire
	Requirements
	Analysis of Existing Protocols
	SpaceFibre Approach
	Compatibility with SpaceWire
	Architecture Overview
	Architectural Overview
	Overall Architecture
	SpaceFibre CODEC Layers
	Serialiser / De-serialiser
	Line Drivers & Receivers
	Receive Clock Recovery
	Changing Polarity
	Loopback
	Encoder / Decoder
	Benefits of 8B/10B Coding
	Benefits of 8B/10B Coding
	8B/10B Encoder
	8B/10B Notation
	8B/10B Notation Examples
	Part of 5B/6B Encoding Table
	3B/4B Encoding
	8B/10B Control (K) Codes
	8B/10B Comma Pattern
	Commas and character alignment
	De-serialiser and Character Alignment
	De-serialiser and Character Alignment
	RX Synchronisation State Machine
	Re-Initialisation after Loss of Sync
	Ordered Sets
	Link Level Ordered Sets
	Encoder / Decoder
	Data Rate Adjustment
	Receive Elastic Buffer
	Receive Elastic Buffer
	Receive Elastic Buffer
	Receive Elastic Buffer
	Link Initialisation and Power Management
	Link Initialisation State Machine
	Link Initialisation State Machine
	Initialisation from Auto-Start
	Initialisation through FarConnected
	Initialisation when both ends Link Start
	EMC Mitigation and Data Framing
	Frames
	Data Framing Ordered Sets
	Data Frame Format
	Idle Frame Format
	Frames
	CRC
	EMC Mitigation and Data Framing
	Scrambler
	Scrambler
	De-Scrambling
	Scrambler/De-Scrambler
	EMC Mitigation and Data Framing
	Transmit Data Frame Interface
	Transmit Ordered Set Interface
	Receive Data Frame Interface
	Receive Ordered Set Interface
	Architecture Overview
	Virtual Channels
	Flow Control
	Flow Control Ordered Set
	SpaceFibre/SpaceWire Router�
	SpaceWire-SpaceFibre Router
	SpaceWire Packet Mapping
	SpaceFibre/SpaceWire Router
	Photo of test unit
	Results
	SpaceFibre Requirements
	Conclusions

