20th, Feb. 2008

Recent ASIC Developments by NEC

Hiroki Hihara NEC TOSHIBA Space Systems, Ltd.

NEC/TOSHIBA NEC and SpaceWire User's Group, Japan Proprietary

Empowered by Innovation

NEC/TOSHIBA

NEC and SpaceWire User's Group, Japan Proprietary

Empowered by Innovation

3

Space Cube Architecture

- a mutual subset of T-Engine architecture (2)

20th. Feb. 2008

□ Basic CPU module for Space Cube 2

NEC/TOSHIBA NEC and SpaceWire User's Group, Japan Proprietary

Space Cube[®] 2

- Technical Features

Base Model

- SpaceWire interface: 3ch (additional ports are available)
- UART interface: 2ch @ RS422
- System Memory:
 - FLASH Memory (2MB) and/or PROM/EEPROM
 - Burst SRAM (4MB)
 - Asynchronous SRAM (4MB)
- Data Recorder Memory:
 - SDRAM (1GB)
 - Back-up FLASH Memory (1GB)
- Size (mm): 71(W) x 220.5(D) x 175.5(H)

NEC and SpaceWire User's Group, Japan Proprietary

Empowered by Innovation

Key ASICs for Space Cube 2 64bit MPU and Burst SRAM developed by JAXA

HR5000

- 320MIPS 64bit micro-controller with integrated peripheral devices on one chip
- 0.18 μ process
- Peripherals
 - PCI Ver. 2.2
 - eight-bank memory controller with EDAC
 - 2ch UART
 - 2ch Timer
 - 2ch DMA controller
 - Interrupt controller
- □ Burst SRAM

NEC/TOSHIBA

- 36Mbit / chip

NEC

20th, Feb. 2008

Road Map Overview for SpaceWire in Japan

20th. Feb. 2008

Satellite Assembly Kit with SpaceWire ASICs for standardized satellite bus

7

□ Space Cube 2, Router ASIC, and NIC ASIC

User-side SpaceWire interface ASIC - SpaceWire-NIC07

Common network interface chip for components

- Two SpaceWire ports
- Selectable Monitor Function

9

Platform extension for exploiting SpaceWire ASICs

NEC Empowered by Innovation

Common Software Interface for SpaceWire ASICs

Common API with UoD

 developed in joint development activity

T-Kernel

- State-of-the-Art real-time operating system
- the successor of TRON operating system, developed in TRON project
- standardized by
 Ubiquitous Networking
 Laboratory, Tokyo.

Reference Software Architecture on Space Cube

Test equipments for developing components using SpaceWire ASICs

11

□ SpaceWire test set with legacy interface support

Multi Protocol Tester with SpW and Legacy I/F by NEC/NTSpace

NEC

NEC/TOSHIBA NEC and SpaceWire User's Group, Japan Proprietary

SpW CUBA Software with Space Cube

by UoD and NTSpace

□ The same RMAP protocol analyzer software runs on both USB brick and Space Cube[®]

13

□ SpaceWire CUBA Software on Space Cube

NEC/TOSHIBA NEC and SpaceWire User's Group, Japan Proprietary

Empowered by Innovation

Onboard software development Platform using SpaceWire ASICs

□ SOFTWARE DEVELOPMENT ENVIRONMENT

- Commercial level Space Cube®-mini
 - Engineering model with HR5000 micro-controller
- Palm top size model (original Space Cube®)
 - VR5701

 (commercial 64bit micro-controller
 by NEC Electronics Corp.)
- JTAG ICE (In-circuit Emulator) by Yokogawa-Digital Corp.

NEC

NEC and SpaceWire User's Group, Japan Proprietary

NEC and SpaceWire User's Group, Japan Proprietary

20th. Feb. 2008

Empowered by Innovation

15