SpaceWire-RT: 10th SpaceWire Working Group Meeting, ESTEC, 20th February 2008

A) Summary of Open Issues in the SpaceWire-RT Requirements

The following summary describes the key discussion points (open issues only) raised during the presentation of the SpaceWire-RT requirements document by Steve Parkes.

1. Should there be a requirement on the best-effort and resource-reserved services to deliver packets to the user in sequence?
 - For:
 - SOIS defines in-sequence delivery
 - SOIS aims to present a consistent interface for all sub-network standards, other standards (e.g. MIL STD-1553) always deliver packets in order
 - If an application requires in-sequence delivery and it uses a best-effort service without in-sequence guarantees it requires more complexity
 - Against:
 - In-sequence delivery requires extra complexity in the SpaceWire-RT stack
 - If best-effort is required to guarantee in-sequence delivery then SpaceWire-RT will not be able to provide a basic service equivalent to simple SpaceWire packets
 - If an application requires in-sequence delivery it should use the assured service
 - If an application requires in-sequence delivery it will probably require other characteristics provided by the assured service

2. Should there be an explicit requirement on the best-effort and resource-reserved services to ensure that no duplicate packets are delivered to the user?
 - For:
 - SOIS defines that no duplicates are delivered
 - SOIS aims to present a consistent interface for all sub-network standards, other standards (e.g. MIL STD-1553) never deliver duplicate packets
 - If an application requires no-duplicates and it uses a best-effort service without no-duplicate guarantees it requires more complexity
 - Against:
 - No-duplicate delivery requires extra complexity in the SpaceWire-RT stack
 - Under normal conditions SpaceWire does never transmit duplicate packets

3. Should there be a requirement for best-effort and resource-reserved services to carry out error checking?
 - Similar to above, should the best-effort and resource-reserved services be a thin a layer as possible over SpaceWire?

4. Should SpaceWire-RT define a maximum packet length? If so, how long should it be?
 - Can this be implementation defined?
 - Would be difficult to provide guarantees of properties such as timeliness under these conditions
 - Would it be possible to give a list of supported packet lengths?
 - Should the requirements specify where the segmentation/de-segmentation should take place?

5. The current SpaceWire-RT requirements document exposes a single global address space to the user which is translated into SpaceWire addresses, it is proposed that these are 16-bit.
 - Does this have to be fixed, can it be variable length?
• Is 16-bits enough?
• SOIS does not define address size.

6. The current set of requirements define the timeliness of SpaceWire-RT networks by giving the case of a 1ms latency across a network composed of three routers.
 • Is this definition necessary?
 • Is 1ms correct?

7. Better use cases are required for testing and analysing proposed implementations of these requirements.
 • Use cases gratefully received.

Note:

• Where these notes state “Suggest:”, the following comment was made by the speaker
• Where these notes state “Query:”, the following comment/question was made by a member of the working group who was not the speaker.

B) Detailed discussion flow:

B.1 SpaceWire-RT Requirements (S. Parkes presentation)

• Concentrate on requirements, not on protocols
• RT = real-time or reliable and timely
• Best effort
 o Single attempt
 o In sequence, no errors, no duplications
 o Permit priorities
• Assured
 o Ensures delivery
 o If no delivery possible, sender informed
 o In sequence, no errors, no duplications
• Resource reserved
 o Single delivery attempt
 o Not assured
 o In sequence, no errors, no duplications
 o All within a channel (channel defines resources used to transmit SDU)
 o Priority within a channel
• Guaranteed
 o Combines assured and resource-reserved
• Suggest: Best effort and assured should not require in-sequence, can cause unnecessary lost packets
• Suggest: No duplicates, should implement as don’t send duplicates rather than check for duplicates
• Packet length is defined by SpW-RT, a lot of analysis depends on maximum packet length
 o Query: should it be defined on a project-basis? Suggest defined once-and for all
 o Query: give a predefined list of maxima, project can choose? Suggest: possibly
 o Query: where should packets be chopped up? Should this be specified in the requirements?
• SpaceWire shall see SpaceWire addresses
• Redundancy defined as a primary route plus alternative route(s)
 o Query: are these routes to the same destination? Suggest: yes, always
• Channels have channel identifiers and are used when timeliness is required
• May use time-division
• May use bandwidth-reservation
• Suggest remove requirement on no duplication
 o Query: but SOIS specifies this, and SOIS specification should not be driven by SpaceWire
 o Query: If SOIS is maybe wrong then we need use cases
 o Query: Should best effort include error checking? Suggest: Needs discussion
• Discussion:
 o Best effort should be as simple as possible
 o If you permit out of sequence then it puts complexity into application
• Channel resources are shared between guaranteed and assured
• Addressing discussion:
 o Global address number
 o Should this be limited?
 o SOIS says that this should not be limited
 o Suggest: 16-bit
 o Suggest: global address space that can be mapped onto SpaceWire local addresses
 o Query: shouldn’t use addresses for functions with SpaceWire nodes
 o Query: Can’t 223 addresses (LAs) because need to allocate both duplicate LAs and LAs for EGSE
• Retry and redundancy strategies:
 o Query: You should state that all strategies are permitted concurrently
 o Query: Do you have requirements on statistic collection? Suggest: This should be added as a requirement
• Query: What is 1ms requirement based on? Surely packet size and link speeds should be specified? Suggest: that links speeds are added to the requirement.
• Query: Should the requirements have a number for timeliness in it at all? Suggest: yes.
• Query: Wish to see an additional requirement stating that SpW-RT should not affect existing standards.
• Query: Should this include time-synchronisation? Left open.
• Query: With TDM use case, what about multiple PDUs per slot? Are the requirements restricted to one PDU per slot? Suggest: Not in requirements
• Query: Can synchronise OS scheduling to TD slots which will improve efficiency
• Query: On what basis do you calculate the bandwidth usage? Measure bandwidth using a similar resolution to TDM
• Query: Do you need to synchronise the periods over which the bandwidth is measured? Suggest: yes
• Query: Do acknowledgements have higher priority than the packets that they are acknowledging? Suggest: yes.
• Query: Use cases are too simplistic for testing? Suggest: Yes, can you provide better use cases?
• Philippe: Issues will be collated, and distributed in May, ready for discussion in June WG meeting.

B.2 Use Case Study for SpaceWire-RT (T. Yamada)
• JAXA onboard system architecture specification is written but only available in Japanese
• Use intelligent nodes to manage non-intelligent nodes
• Suggest/assume the SpaceWire-RT is carried over RMAP
• Clock synchronization is done using RMAP writes
 o Synchronisation is done using time-codes
 o RMAP writes provide precise clock value at which time-code was/will be transmitted
• Many use cases require TDM
• All use cases could use assured with priority
• Suggest: TDM is the simplest way of meeting latency and multiplexing requirements
• Suggest: May need to mix BWR and TDM (BW reservation in TDM slots)
• Conclusion: Most networks will use Resource reserved using TDM (possibly with priority, possibly using BWR in TDM slots)
• Query: Is RMAP in the correct position in the stack
• Query: Do you have requirements to do “remote terminal” to “remote terminal” transfers? (Based on 1553) No, everything goes via intelligent node (used as bus controller).