!

DUNDEE

ke
'

[hegrarticy

el ol Applsed Uompaling

The SpaceWire CODEC

Chris McClements, Steve Parkes
University of Dundee

Augustin Leon
European Space Agency

ki . :
5 S i INntro d uction

DUMNDEE

e SpaceWire system

— Nodes connected indirectly through routers or directly node to
node

o SpaceWire CODEC

— Encodes and decodes bit-stream on physical medium,
SpaceWire cable.

— Part of the data-link layer for SpaceWire systems to
communicate

— Implemented in RTL level VHDL code.
— Compliant with ECSS-50-12A SpaceWire standard

 Goals
— Technology independent
— High speed operation, Low area footprint
— Configurabllity to users requirements and target technology

iy
‘ Dregrarticient of Applsed Uompaling

Architecture (1)

Transmit Data Rate

Transmit Data/Timecode

DUMNDEE
Data Strobe Out
Transmitter Transmit
— Control/Status
<
Receiver
Control/Status
<

Data Strobe In
S

Receiver
—_—

>

>

Link Control
<

Initialisation

State Machine _
Link Status

Received Data/Timecode

—————

ST = S Architecture (2)

DUNDEE

o |nitialisation state machine
— Establishes a connection with other end of link
— Enables and disables transmitter and receiver
— Timeout counters to determine state changes

e Transmitter
— Bit-stream serialisation using shift register
— Variable data rate and transmit clock selection

— Next character selection dependent on initialisation
state and current requests

— Allowed to send data characters when FCTs are
received

ST = S Architecture (3)

DUMNDEE

* Receiver
— Performs receiver clock recovery
— Decodes input bit-stream.
— Controls receiver buffer credit operations.
— Resynchronises received characters to receive buffer clock

* Internal Error Recovery

— Error recovery is performed when a link error is detected.

— Recovers the tx and rx data buffers due to link disconnection
* Transmitter may be in the middle of sending a packet
— Packet is flushed from transmitter buffer.
* Receiver may have been receiving a data packet.
— Received packet is truncated with an error end of packet

* Any outstanding FCT characters are added back to space available
in receiver buffer counter.

iy | :
B ot Serial Interface

DUMNDEE

« SpaceWire uses data-strobe encoding
— Strobe changes when data retains value for one bit-period

— Efficient receiver clock recovery using Data xor Strobe at the
expense of one extra signal wire.

o Transmitter serial interface can be configured for

— Single data rate
* One bit of information shifted for each transmit clock period
e Simplest implementation
— Double data rate
» Two bits of information encoded for each transmit clock period

« Extra complexity as two bits of data must be multiplexed onto the
output pin for each clock period

!

a Departinent of Applied Competing CO N f| g U ra_tl on I nte rfaCe

DUMNDEE

 Main Goal of the VHDL SpaceWire CODEC

— Tailor the VHDL to suit the users target hardware and
application.

e Target hardware comes under two main headings

— ASIC devices
— PLD/FPGA devices

« Main factors affecting SpaceWire CODEC design
— Number of clock nets or clock routing resources
— Most efficient data storage method
— Size of receiver buffer
— Speed requirements
— Area requirements

| y Drepartinent of Appleed Computing Plpellnlng
Configuration

* Pipelining defines the insertion of flip-flops to increase performance
— Extra logic is required for the pipeline flip-flops, greater area footprint

— One cycle of latency is added to the transmitter when transmitting a
data character and to the receiver when receiving a data character

* Increase in transmit speed compensates for extra logic and latency

« Simple data-rate comparison on a Xilinx Virtex-e device with no
constraints on the logic

Type Area footprint Max transmit rate Max input bit rate,
FLIP-FLOPS | LUTS | SDR DDR Receive clock*2

Non-pipelined | 257 352 93 mbits/s | 186 mbits/s | 285 mbits/s

Pipelined 267 354 141 mbits/s | 282 mbits/s | 345 mbits/s

Degiartient of Appiked Computing T Fransm It C | OC k (1)

DUMNDEE

* The transmit clock frequency determines the maximum
serial output bit-rate.

— Maximise target hardware capabilities to achieve maximum data
rate

« CODEC transmitter constraints:

— Transmit clock
» System clock or independent transmit clock
— Set dependent on number of clock sources and nets available
— Variable data rate
» External, Internal clock divider or internal clock enable
— Set dependent on the users variable data rate generation requirements
— Default 10MBiIts/s transmit rate

» Internally generated using variable data rate generator or external
crystal

— Set dependent on the clock sources, system and transmit clock
frequencies.

e Transmit Clock (2)

DUNDEE

o All transmit Clock Configurations

Symbolic name Input clock Default 10/5MHz Variable data rate
SYS DEFAULT System Clock System Clock System Clock
SYS SLOWCLK System Clock External 10/5 MHz System Clock
SYS SLOWCLK DIV System Clock External 10/5 MHz Clock divider
SYS DIV System Clock Clock divider Clock divider
SYS_EN System Clock Clock enable Clock enable
TXCLK_DEFAULT Transmit Clock Transmit Clock Transmit Clock
TXCLK_SLOWCLK Transmit Clock External 10/5 MHz Transmit Clock
TXCLK_SLOWCLK DIV | Transmit Clock External 10/5 MHz Clock divider
TXCLK_DIV Transmit Clock Clock divider Clock divider
TXCLK_EN Transmit Clock Clock enable Clock enable

DUNDEE

External
Clock
generation
(e.g. PLL)

ransmit default

configuration

LINK_RUNING

<

TXCLK

Tx
Encode

DOUT
=

DOUT F

SOUT

SOUT_F

e Transmit clock Is input from external clock
generator

“& v Internal Divider With
External 10Mbits/s

XIMAX

FSM.SEL_SLOW

I:} TXRATE : .

Prog XI_DIV_CLK ‘;,\

Divider

XCLK_DIV \O\ DOUT F R
| TX

l | -
/ souT

(Glitch Free Clock Multiplexer)
SLOWCLK SOUT_F

1/
(Glitch Free Clock Multiplexer)

 Internally generated variable transmit
clock

DOUT

oy .
a Departiment of Applied Compating I nte 'n al C I OC k E f ab I e

DUMNDEE

DOUT
——

DOUT F

TXCLK. Tx
Encode

SOUT

SOUT _F
—» _

A 4

FSM.SEL_SLOW

XENR
Clock ® >

»| Enable
Generator XENF >

TXRATE

CFG_SLOWRATE_TXCLK

g

* D input of transmitter flip-flops Is gated by
clock enable signals

a Dregarticient of Appleed Computing Varlable Da_ta_ Ra.te

DUNDEE

 Default bit rate for all configurations
— (No external 10Mbits/s clock)
TxMaxBitRate

10Mbits =
(CFG_ SLOWRATE _ TXCLK +1)

« Variable bit rate for all configurations
TxMaxBitRate

TxNormalBitRate =
(TXRATE +1)

Dregrarticient of Applsed Uompaling

DUNDEE Conflgura‘tlon S FACE

: Receive Buffer

* Receiver buffer stores received data characters
— User sets size of receive buffer 2"
» 8 bytes to maximum user buffer size (e.g. 32 bytes, 1Kbytes, 1Mbytes, etc.)
— User sets maximum outstanding data characters, >= 8 and <= 56

* Receiver credit count operations performed internally by CODEC:

— Uses an internal FCT pointer which moves ahead of read and write
pointers for outstanding data characters and reserved buffer space
— Request transmitter to send one FCT when:
e unreserved space in buffer, up to maximum buffer size, and
e not currently requesting maximum outstanding data characters

 Credit error is detected when a data character is received when not
requested.

— FCT pointer is moved back to write pointer position (No outstanding
data characters

!

|] Departient of Appleed Conmputing Recelve bUffer data re_
synchronisation

* Recelived data characters resynchronised to receive
buffer clock domain
— Double flip-flop resynchronisation control signals used

— At maximum bit rates the time taken to resynchronise data
characters is greater than the time taken to receive

— Internal 4 byte buffer used to store received data characters until
the data is written to the receive buffer

e Design aims/goals
— No internal data storage!

e Use most common storage methods
— Latches for ASIC cell based devices
— Flip-flops/RAM inference for FPGA based devices

!

pre” . 1
a Dwgartmant/of Applld Comploring L atC h I m p I emen tatl on

DUNDEE

« Three stage latch cell write is performed
— Receiver clock cycle 1 : Setup data, address
— Receiver clock cycle 2 : Perform write strobe
— Receiver clock cycle 3 : Hold data, address

* Reception of empty packet (double EOP/EEP) violates
three clock cycle write rule.
— CODEC can be configured to ignore empty packets

* Reception of <data><eop><data> violates three clock
cycle write rule (<eop> = 2 receive clock cycles)
— CODEC receiver delays EOP/EEP by one clock cycle

a Departinent of Applsed Compating H OSt I nte rfaCe

DUMNDEE

 Link control functions implemented as In
SpaceWire standard

— Auto-start link
e Wait for other end of link to make connection

— Start link
o Attempt to make a connection with the other end of the link

— Disable link and force disconnection

e Status outputs
— Status outputs synchronous with system clock
— Provide a snapshot of the CODEC

wihiy :
Drepartinent of Applied Compating Stat u S O u tp U tS

DUNDEE

tPACE WCTEAR: 4

Signal Description
STATUS(0) Disconnect error.
STATUS(1) Parity error.
STATUS(2) Escape error.
STATUS(3) Receiver credit error.
STATUS(4) Transmitter credit error.
STATUS(7:5) Interface state encoded into three bits (6 states)
STATUS(8) Interface state machine is in the Run state.
STATUS(9) Receiver got NULL. Remains asserted after first NULL.
STATUS(10) Receiver got FCT. Remains asserted after first FCT
STATUS(11) Receiver got N-chars. Remains asserted after first N-Char
STATUS(12) Receiver got Timecodes. Remains asserted after first Timecode
STATUS(13) Transmitter has credit to send one more data character
STATUS(14) N-char sequence error (N-char received before link state is Run)

STATUS(15)

Timecode sequence error (Timecode received before link state is Run)

!

B9 ‘e Transmit host interface

DUMNDEE

 FIFO interface to host system
— Transmit FIFO is implemented externally using technology

specific data storage

TXBITCLK
Pl TX_FIFO_EMPTY
<—
< = = TRANSMIT <:|
souT CODEC TX_FIFO_DATA(8:0) FIFO HOST
4— 4>
TX_FIFO_READ

e Synchronous empty and read signals
— Synchronous to TXBITCLK which may be asynchronous to host

clock
 Good implementation uses FIFO with independent read

and write clocks

!

$9 s Daceiver host interface

DUMNDEE

 FIFO Interface to host system

— Data buffer is implemented externally using users
technology specific storage method

— CODEC implements synchronous FIFO interface

RXBUF_READ
RXBUF_EMPTY
DIN RXBUF_PROGFLAG

RXBUF_RDCLK
SIN >

CODEC | RXBUEDATA CODEC [—>

RXBU F_WRVALIE'
RXBUF_WRAD[& RECEIVE

BUFFER ——>

<

RXBUF_RDVALIE

RXBUF_RDADBR

B Receive buffer clock

Dregrarticient of Applsed Uompaling

frequency (1)

 Parallel data output from the CODEC written to the receive buffer
using:
— system clock or independent read buffer clock

» Receive buffer clock can be slower to save power, for example.
— 200Mbits/s input bit-rate

— Stream of one byte packets causes, on average, one data character
available every 35ns

» Resynchronisation buffer smoothes data flow

— Minimum receive buffer clock frequency to support data rate is this case
Is 1/35ns = ~28.571 MHz

* For the same setup

— Stream of four byte packets causes, on average, one data character
available to receive buffer every 44 ns.

— Minimum receive buffer clock frequency to support input data rate in this
case Is 1/44ns =~22.727ns

| e RECEIVE DUffEr ClOCK
frequency (2)

 From previous slide it can be seen that the minimum size
of packets and the input bit-rate determine the minimum
receive buffer clock

e Minimum read clock =

1
(MinNumDatax Tdata) + Teop
MinNumData +1

e Interms of maximum input bit rate =

1
(Trxbuf _ clk x NumPktNchars
NumPktBIts

H J ; Dregartivent of Applied Computing P e rfo rm an Ce an d
latency

e EXpected performance
— 200Mbits/s Router ASIC device
— 200Mbits/s University of Dundee components

— Placed and routed at 400Mbits/s in a Virtex 2 -6
speed grade device

e Latency
— Minimum transmit latency is 2 transmit clock cycles

— Minimum receive latency is
» 2 receive clock cycles +
« 2 receive buffer clock cycles

o e v = | .
a Drepartisent of Applied Computing C O n CI u S I O n S

DUMNDEE

e SpaceWire standard ECSS-50-12A
compliant SpaceWire CODEC

e Features
— High speed operation
— Configurable to meet users requirements
— Ease host integration
— Technology independent

