Atmel SpaceWire activities status and plans

Dominique de Saint Roman
Aerospace Marketing Manager
Microcontroller Business Unit

Tel: +33 2 4018 1802
Mobile: +33 6 8037 0429
Dominique.de-saint-roman@nto.atmel.com
Agenda

- Rationales for going Spacewire
- Atmel technology roadmap
- Current IEEE1355 based products
- SMCS chips upgrade to SpaceWire standard
- SpaceWire plans
- Technology match
- Conclusions
Rationales for going Spacewire

• First protocol communication activity to be actually coordinated:
 ➢ At the European level, with involvement of:
 ▪ Space agencies
 ▪ Space systems manufacturers
 ▪ Universities and SMEs
 ▪ Silicon manufacturers
 ➢ Across the Atlantic ocean with NASA & JPL

• Standardization is the only means to achieve competitiveness, cost reduction, time to market and reliable designs

• Spacewire will help to reduce chip power consumption while the SoC trend is making chips more power hungry
Atmel technology roadmap

- Atmel technology roadmap
- 0.18 µm
- 0.25 µm
- 0.13 µm
- 0.35 µm (NV)
- 0.6 µm (NV)

Memory

- DPR/FIFO
- 256Mb SRAM cube
- 16Mb SRAM
- 64Mb SRAM cube
- 4Mb/15 ns 60142E SRAM
- Serial 1Mb E2PROM AT17LV010
- //1Mb E2PROM AT28C010 4Mbit, 8Mbit

- **AT697E**
 - V8 SPARC 100Mips+
 - Embeddable AT697E based IPs
 - SEU hardened

- **ATC18RHA/5Mg**
 - R-FPGA/200Kg SEU hardened
 - 256Mb SRAM cube
 - AT28C010

- **TSC695FL 3.3V 12Mips**

- **System on Chip**
 - 4.1V
 - 1.8V
 - 2.5V

- **Standard ASICs**
 - R-FPGA/40Kg SEU hardened

- **R-FPGA**
 - 12Mips++
 - AT17LV010

- **21020F companion chips**

- **AT697E**
 - SEU hardened

- **ASIC embeddable R-FPGA**

SCC

QML
Current IEEE1355 based products

• Standard ASIC offering encompasses:
 - The TSS901E providing a triple point to point IEEE1355 based serial connections, so called « SMCS »
 - The T7906E providing a single point to point IEEE1355 based serial connection, so called « SMCS lite »

• Basic performances:
 - Latch up immune and 50Krads total dose capability
 - 200Mbps data rate (no LVDS)
 - Designed and industrialized prior to the SpaceWire joint efforts
 - Designed and application supported by Astrium Germany
SMCS chips upgrade to SpaceWire standard

- See Astrium presentation, but basically, the resulting chips will be:
 - pin compatible with former versions
 - produced on 0.5µm RT and RTP respectively for the triple and single point to point connection chips

- Initiative supported:
 - And co-funded by ESTEC
 - By Astrium through design and co-funding
 - By Atmel though industrialization and co-funding

- Tentative schedule:
 - Expected kick off in January 2004
 - Sampling in May 2004
 - Industrialization completed by September 2004

- Astrium / Atmel business model still to be agreed on
SpaceWire plans

- Atmel commitment is:
 - To industrialize the « SpW Router » standard ASIC
 UoD and Austrian are currently designing on our
 MH1RT ASIC library:
 - this raises the question of its adequation with the RTI
 supposedly to be designed on our 0.18µm ASIC library
 - To add the “SpW CODEC” to the relevant ASIC library
 (ies) once an agreement is reached with ESTEC as to
 how best achieve it (hard versus soft solution)
 - Foreseen availability date for both: mid 2005
• Technically:
 - Both MH1RT & ATC18RHA have LVDS buffers
 - Power/speed performances:
 - MH1RT: 20mW / 215 MHz or 430 Mbps @ 3.3 V
 - ATC18RHA: 20mW / 325 MHz or 650 Mbps @ 3.3 V
 (simulated only, so far)
 - MH1RT:
 - pre-diffused, resulting into lower NRE
 - 2 buffer sites per LVDS pair (TX and Rx)
 - ATC18RHA:
 - pre-characterized, resulting into higher speed performances and NRE (!!!)
 - 2 and 3 buffer sites respectively per LVDS Rx and Tx pair
Technology match (2)

- Scheduling:
 - MH1RT fully released since 2001
 - ATC18RHA:
 - Commercial ATC18 distributed since early this year
 - Alpha DK distribution on going
 - Beta DK released by end 1Q04
 - DK fully released by 4Q04
Technology match (3)

- Package is like a cable: therefore, high speed serial IF will need specific package layout.

- The current cavities layout are already optimized for low resistivity path on logic bias pins, the so-called 4 decks cavity.
The new cavities will dedicate pins to LVDS in such a way that:

- They are low L,R C
- They have same // path
- They are shielded
- They are by cluster of 4/8
- They are at the periphery for MCGA
Conclusions

- Atmel has the Si technology
- Atmel will have the products
- Atmel is actively preparing the environment for high speed IF
- Atmel has demonstrated its willingness to support the SpaceWire efforts
- Atmel is a partner for the space industry when going SpaceWire

- THANK YOU!