
Page 1 SPACEWIRE SEMINAR – 4/5 NOVEMBER 2003 JF COLDEFY / C HONVAULT



Page 2 SPACEWIRE SEMINAR – 4/5 NOVEMBER 2003 JF COLDEFY / C HONVAULT

INTRODUCTION

• The SW IP was developped in the frame of the ESA 13345/#3 contract "Building 
block for System on a Chip"

• This presentation describes the SpaceWire Block developed as part of the ScoC
project. It presents the interfaces, the architecture of the block and the 
performances

• The SpaceWire is a serial high speed link compliant with the ECSS-E-50-12
specification from ESA

• The SpaceWire block interfaces AHB and APB interfaces within the SCoC and 
LEON processor architecture



Page 3 SPACEWIRE SEMINAR – 4/5 NOVEMBER 2003 JF COLDEFY / C HONVAULT

BLOCK-DIAGRAM

TX

RX

TX clock generator SW
RX DATA

FIFO

TX DATA
FIFO

HOST
INTERFACE

AHB MASTER

AHB SLAVE

AHB MASTER

RX

TX

TX

APB

Data out

Strobe out

Data in

Strobe in

programmation
TX clock

Commands  to send characters

Acknowledgement

Acknowledgement

Type of character received

SPACEWIRE BLOCK (SWB)

Data to send

Data received

TX clock Input TX clock

RX clock system clock

Clock Domain :

Error Interrupt

Nominal Interrupt

TICKIN

TICKOUT

Max TX clock input



Page 4 SPACEWIRE SEMINAR – 4/5 NOVEMBER 2003 JF COLDEFY / C HONVAULT

DESCRIPTION OF THE DIFFERENT BLOCKS

• The Host Interface block is an interface with the AMBA AHB and APB buses. It 
contains the management of the data sent by the host. It manages the storage of 
data into the host memory

• The TX Data FIFO block is a FIFO containing the data to be transmitted

• The RX Data FIFO block is a FIFO containing the data to be stored into the host 
memory

• The SW block manages the initialisation protocol. This block selects the character 
to be transmitted and checks any error occurrence

• The TX block sends the character at the transmission frequency

• The RX block identifies the received character type

• The TX clock generator block generates the clock transmission rate.



Page 5 SPACEWIRE SEMINAR – 4/5 NOVEMBER 2003 JF COLDEFY / C HONVAULT

INTRODUCTION TO THE INTERFACES

• The basic interface contains CLOCK, TEST and RESETN signals

• The APB interface is used to configure the SWB and to retrieve status

• The TX AHB master interface performs the TX DMA

• The TX AHB slave interface is used when the data transmission is in charge of the 
host

• The RX AHB master interface performs the storage of received data into the host 
memory

• The link interface brings together the data and strobe signals of the transmission 
and the reception.

• The Time interface manages the transmission and the reception of time code

• The Interrupt interface is used to warn the host when a specific event appears.



Page 6 SPACEWIRE SEMINAR – 4/5 NOVEMBER 2003 JF COLDEFY / C HONVAULT

EMISSION

• The SWB receives packets of data from the host through the AHB interface. Two modes are 
possible for this data transfer:
– AHB master mode, which performs the transfer with a chained capability DMA mechanism
– AHB slave mode which performs the transfers with the length of the packet and the 32-bit 

data of the packet

• The 32-bit data is split to 9-bit data to be stored into the TX data FIFO
– The 9-bit data is composed of  8 bits of real data and 1 bit for particular character such as 

EOP and EEP

• When the TX module receives a command from the SW module, the character 
corresponding to the command is transmitted through the LVDS link (Data and 
Strobe)
– The TX module automatically transmits NULL characters when no other transmission is 

requested

• The transmission frequency is programmable through the APB interface.
– The TX clock generator creates the required TX frequency, which can be up to 4 times the 

system clock frequency



Page 7 SPACEWIRE SEMINAR – 4/5 NOVEMBER 2003 JF COLDEFY / C HONVAULT

RECEPTION

• The RX module performs the recognition of the received character type.
– The RX clock is built from the data and strobe input signals

– The RX module also indicates the received characters to the SW module

• Each time that information of character type is received from the RX module, the 
SW module generates an acknowledgement.
– A 9-bit word is stored into the RX data FIFO when a data is received.

– The SW module also activates the TICKOUT signal when a right time code is received

• When the RX data FIFO is not empty, the host interface fetches its 9-bit data. Each 
time four 9-bit data are available, the host interface builds a 32-bit word from these 
four 9-bit data and stores it into the host memory through the AHB bus

• When any error is detected from the AHB transfer or from the transmission link, the 
SWB generates an error interrupt to warn the host.

• The configuration of the SWB is done through the APB interface.



Page 8 SPACEWIRE SEMINAR – 4/5 NOVEMBER 2003 JF COLDEFY / C HONVAULT

FUNCTIONAL MODES

• The SWB supports the following functional modes:

• RESET mode
– TX and RX blocks are inactive

– Host interfaces are inactive

• ACTIVE mode
– TX block is inactive and RX block is active (when entering the ACTIVE mode)

– Host interfaces are always on



Page 9 SPACEWIRE SEMINAR – 4/5 NOVEMBER 2003 JF COLDEFY / C HONVAULT

PERFORMANCES and CONTACTS

• Gates number based on XILINX XCV2000E:   1800 LUT and 1040 flip-flops

– Expected ASIC gates: between 15000 and 20000 gates

• SW bit rate: Around 30 Mbps at 40 MHz based on XILINX implementation (speed 
limited by the XILINX)

• Contacts:
– Jean-François COLDEFY:

· TEL: 33 1 39452623
· EMAIL: jean-francois.coldefy@astrium.eads.net



Page 10 SPACEWIRE SEMINAR – 4/5 NOVEMBER 2003 JF COLDEFY / C HONVAULT



Page 11 SPACEWIRE SEMINAR – 4/5 NOVEMBER 2003 JF COLDEFY / C HONVAULT

A3M Context and Objectives

• Develop middleware building blocks supporting the 
distribution of software functions
Consensus and coordination services ensuring consistent and reliable decisions
Implementation of innovative algorithms developed by INRIA (UCS and

UCN)
• Maintain real time and fault tolerance properties

Limit the overhead brought by the distribution scheme without sacrificing
the global fault tolerance

• Implement asynchronous algorithms, i.e. not relying on synchronized distributed 
nodes
An essential merit of asynchronous algorithms: their logical behaviour

(safety and liveness properties) is fully independent of the underlying timings
For this reason, the functional testing complexity is orders of magnitude smaller 

than that of synchronous algorithms 



Page 12 SPACEWIRE SEMINAR – 4/5 NOVEMBER 2003 JF COLDEFY / C HONVAULT

A3M Demonstration Domains

P0 P1 P2 Node 1

Node 2

Node 3

P0 P1 P2

P0 P1 P2

ag
re

em
en

t

ag
re

em
en

t

ag
re

em
en

t

Acqu.
manager

Cmd
manager

Acqu.
manager

Acqu.
manager

ag
re

em
en

t

Cmd
manager

Cmd
manager

• Distributed consistent processing under active 
redundancy
Some applications require active redundancy with 

error masking, in order to ensure a very high level 
of dependability.

Most solutions implemented today relies on 
synchronous mechanisms (the computers must 
be synchronized)

• Distributed replicated data consistency, program 
serialization & program atomicity
Classical OBSW includes a standardized mechanism 

to share / exchange data between applications : 
the data pool

The reliable implementation of such data pool 
function is a key to distribution

P1

P2
Node 1

Node 2

Node 3

P3

P4

P5

P6 D
is

tri
bu

te
d

«
da

ta
-p

oo
l»



Page 13 SPACEWIRE SEMINAR – 4/5 NOVEMBER 2003 JF COLDEFY / C HONVAULT

A3M Demonstration Platform

SRAM

FPGA
LEON

Space
Wire

Space
Wire

BLADE cPCI board
SRAM

FPGA
LEON

Space
Wire

Space
Wire

BLADE cPCI board
SRAM

FPGA
LEON

Space
Wire

Space
Wire

BLADE cPCI board

bi-directional SpaceWire links

LINUX PC

• The hardware platform has been built on 
ESA standards for near future missions
LEON SPARC microprocessor, running at 20 

MHz
SpaceWire high speed communication links, up 

to 4 times the processor frequency (80 Mbit/s)

• POSIX 1003.1b/1.c standard API has been 
selected for the software platform
Practically, Tornado/VxWorks environment 

allowed an incremental development 
(simulator, commercial h/w, final hardware 
platform)



Page 14 SPACEWIRE SEMINAR – 4/5 NOVEMBER 2003 JF COLDEFY / C HONVAULT

A3M Results related to SpaceWire (1)

• Memory-to-memory data transfer performance

FREQ_RUN parameter 0 1 2 4 8 16 32
Raw bit rate (Mbit/s) 80,0       40,0     26,7     16,0     8,9       4,7       2,4       
Usable data rate (Mbit/s) 60,9       30,5     20,3     12,2     6,8       3,6       1,8       
packet size = 1024 bytes, receive buffer size = 1024 packets
Data rate (Kbytes/s) n/a 3 700  2 478  1 487  826      437      225      
Data rate (Mbit/s) n/a 30,3     20,3     12,2     6,8       3,6       1,8       
% usable data rate n/a 99,5% 100,0% 100,0% 100,0% 99,9% 99,8%

Useful data bytes 1 024     
Useful data bits 8 192     8 bits / byte
Character additional bits 2 048     2 bits / data byte
Overhead FCT 512        1 FCT token / 8 data character
Overhead EOP 4            1 EOP token / packet
Bits/packet 10 756  
Useful bits/total bits 0,762

3 interconnected BLADE boards with simultaneous bi-directional exchanges



Page 15 SPACEWIRE SEMINAR – 4/5 NOVEMBER 2003 JF COLDEFY / C HONVAULT

A3M Results related to SpaceWire (2)

• Time synchronization for performance measurement
The implemented SpaceWire interface provides in-built clock synchronisation 

atop the SpaceWire “time code token”, used in a master/slave approach

SPW0/1

CTM

SWM

SPW0

SPW1

SPW0/1
TICKIN

TICKIN

Repetitive Alarm
1 Hz in phase with ET second

32 + 24 bits time

CTM

32 + 24 bits time

SWM

TICKOUT

Frequency
Reset

Set
TimeS/W

handler
TICKOUT
interrupt

•Write “future time” value
derived from time code
•Enable Set Time
& Frequency Reset

TIME 
CODE

TOKEN

“Master” board “Slaves” boards



Page 16 SPACEWIRE SEMINAR – 4/5 NOVEMBER 2003 JF COLDEFY / C HONVAULT

A3M Results related to SpaceWire (3)

• The A3M middleware (UCS/UCN/Services) fulfil its objectives.
A3M interfaces are very simple and makes the distribution transparent to the developer of 

applications.

With respect to the platform used for the tests (LEON1 at 20 MHz), the performances are good.

• SpaceWire is compliant with constraints or requirements leading to the distribution of 
software functions.
Very efficient inter-processor communication: with intelligent controllers like those in the 

demonstration board, very high data rate can be achieved from memory to memory.
The observed limitation is at SW level. Efficient implementation of protocols atop SpaceWire requires 

to limit the number of SW layers (to the detriment of genericity/portability).
The software must take into account the flow control mechanism in order to avoid overload 

propagation from one processor to the others.

• High precision time synchronization via the SpaceWire links with very low software 
overhead is very interesting, especially for distributed software performance evaluation.



Page 17 SPACEWIRE SEMINAR – 4/5 NOVEMBER 2003 JF COLDEFY / C HONVAULT

Perspectives

• Optimisation of the implementation:
Implementation of the FD mechanisms in hardware: this can tremendously 

decrease the maximum detection delay of a failure on the one hand and the 
CPU load on the other hand.

FD mechanisms required by A3M algorithms could take advantage of the 
SpaceWire disconnection detection (no use of bandwidth).

Implementation of the UCS/UCN algorithms in hardware (warning: may excess 
the capacity of the current space compatible FPGA or ASIC).

• Take into account a fully compliant SpaceWire network, i.e. including dynamic 
routers.

• Apply A3M middleware to next-to-come SpaceWire-based data handling 
architectures, e.g. future multi-processor scalable payload architecture.


	INTRODUCTION
	BLOCK-DIAGRAM
	DESCRIPTION OF THE DIFFERENT BLOCKS
	INTRODUCTION TO THE INTERFACES
	EMISSION
	RECEPTION
	FUNCTIONAL MODES
	PERFORMANCES and CONTACTS
	A3M Context and Objectives
	A3M Demonstration Domains
	A3M Demonstration Platform
	A3M Results related to SpaceWire (1)
	A3M Results related to SpaceWire (2)
	A3M Results related to SpaceWire (3)
	Perspectives

