
4Links ™

1

Monitoring and Analysis
of SpaceWire Links

Barry M Cook, Paul Walker
4Links Limited

The Mansion, Bletchley Park,
Milton Keynes,

MK3 6ZP, UK
barry@4Links.co.uk
paul@4Links.co.uk

James Lux, Frank Loya
Jet Propulsion Laboratory
4800 Oak Grove Avenue,

Mailstop 161-213
Pasadena CA 91109

USA
james.p.lux@jpl.nasa.gov

4Links ™

2

Block Diagram of DSP Scatterometer Breadboard

MCMDSP

Analog
Digital

Conversion

Radar Transmitter
Breadboard

Radar Receiver
Breadboard

Analog
Digital

Conversion

Analog
Digital

Conversion

Host
Low Speed
Serial Data

SpaceWire Links
to be monitored

MCMDSP MCMDSP

TTL
LVDS

TTL
LVDS

TTL
LVDS

N1 N2

Tx

Rx Tx

Rx

N3

RxTx

N4

RxTx

Using two links of
SpaceWire-PCI board

for monitoring

4Links ™

3

Introduction
A breadboard scatterometer (a type of
orbiting radar used for measuring vector
ocean winds) was constructed at Jet
Propulsion Laboratory to investigate the
feasibility of using general purpose
programmable Digital Signal Processors
(DSP) to replace the special purpose hardware
used in the previous successful instruments[1].
The architecture used multiple processors to
reach the required computational
performance with the available space
qualified processors (Analog Devices 21020
family). Three Astrium MCMDSP modules
were used in the breadboard, each of which
integrates the CPU, memory, peripheral
controls, and a SMCS332 high speed interface.
The latter was used to implement SpaceWire
links between the processors. The breadboard
successfully demonstrated a scalable
multiprocessor approach for this type of
instrument.

Early in the development effort it was
realized that monitoring of the messages
being passed over the SpaceWire links would
be essential, particularly for development of
the low level message passing drivers, as well
as the higher level algorithms. In particular,
there was a need to match individual
messages with specific Radio Frequency (RF)
pulses transmitted or received by the
breadboard radar, requiring a real-time
capability that could not be conveniently met
with software based solutions in the limited
resources of the DSP. The need to make
real-time performance and timing
measurements required that the monitoring
approach be entirely passive (as opposed to a
decode and retransmit approach). Slide 2
shows a block diagram of the breadboard,
together with the circuit used for monitoring.

4Links ™

4

SpaceWire continually transmits
bits at a constant rate (this is
accomplished by filling in gaps
with Null characters).

allows us to derive formulas that can determine when a character occurred. For
example, given the character sequence , , and the time that occurred
(call it), then the time that occurred is given by:

where is the bit time, and is a function that yields the number of bits in

If either the D or S lines on either
end (receive, transmit) of the link
fails to make a transition within
850 ns., the link will be broken,
and both sides of the link will
reset (i.e. stop transmitting for a
preset time interval).

assures us that property 1 will be enforced.

The SpaceWire bit stream
contains no framing or error-
correcting bits

imposes a “zero tolerance” condition on bit error. Since no characters are used for
framing or error correction, it is assumed that each bit will contribute either to the
content or attributes of a specific character.

The SpaceWire bit stream always
contains enough error detection
bits to detect any single bit error.

assures us that if a single bit error does occur, it will be detected. The SpaceWire data
stream always contains between 10-25% odd parity bits (as attributes of a character).
When a parity error is detected link is reset. This assures us that no corrupt data will
gain acceptance by the receiving node (i.e. a detected reset implies that the incoming
data packet should be discarded).

The separation of the SpaceWire
bit stream into characters can be
done in a single pass

allows the separation of the bit stream into characters with the application of
“straight forward” hardware.

SpaceWire properties enabling passive monitoring and decoding

iC 0i n= L 0C
0T iC

0
1
()

i

i b j
j

T T Cτ
=

= + ∑
τ #b jC

4Links ™

5

Monitoring with Standard Lab Instruments

The initial efforts to monitor the links used
differential high impedance probes and a
digital storage oscilloscope/logic analyzer,
which was satisfactory at first (it is easy to
recognize NUL and FCT tokens after a bit of
practice). When the monitoring need moved to
needing higher level information beyond “is
the link running?”, the limited capture
memory, the high speed signals, and the lack
of a high level interface prompted further
development. One of the authors (Loya)
identified 5 characteristics of the SpaceWire
protocol design that made possible a simple
hardware implementation using a small Finite
State Machine to decode the messages. Table 1
lists the properties and their implications.

SpaceWire-PCI as a Monitor Receiver

The SpaceWire-PCI card, in a suitable
realtime programming environment, can
provide a significant fraction of the
monitoring functionality that would be
provided by the fully idealized monitor
embodied in the state machine described
above. This approach had the significant
advantage that it required almost no
hardware development and there was a
suitable set of API calls available to integrate
the card into a realtime computing
environment.

4Links ™

6

The performance limitations of the
Labview/SpaceWire-PCI monitor
approach easily keeps up with the usual
breadboard traffic, consisting of messages
every few milliseconds consisting of about
a thousand bytes. Unfortunately, the
Labview implementation does not allow
accurate unambiguous time-stamping
(with an accuracy of milliseconds), mostly
because of the limitations inherent in the
NT driver model.

4Links have developed a series of FPGA
implementations of SpaceWire, and use
their latest implementation for monitoring
SpaceWire links. With access to the data
when it arrives, it is possible to give very
precise time-of arrival information. The
data log below shows time stamp reports,
such as [11798.205 633 7s[11798.205 633 7s[11798.205 633 7s[11798.205 633 7s], as shown
by the 4Links EtherSpaceLink ESL-F201
with the Time-Stamp option. The stamp is
a free-running 40-bit count with the
resolution of 100ns.

4Links ™

7

The Time-Code report includes a time stamp of when
the time code arrived, and the time code in the format
specified in the SpaceWire standard, with two reserved
bits and then a six-bit value. Building waveform
capture into the monitoring system allows the data to
be presented already decoded, and co-ordinated with a
report of the triggering event. The waveform below is
captured during SpaceWire initialization.

4Links ™

8

The waveform captured below is the same event as was
reported on Slide 6. Note the time stamp of when the
error occurred, the type of error, the state when the
error occurred, the decode of individual bits, and the
further decode of those bits into characters.
These reports were generated by the EtherSpaceLink
ESL-F201, with options for time codes, time stamps,
error reporting and error waveforms, and were
displayed by the SpaceWireUI program. The
EtherSpaceMon ESM-F200 will bring these
capabilities to monitoring both directions of links.

EtherSpaceLink ESL-F201

