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Block Diagram of DSP Scatterometer Breadboard
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Introduction
A breadboard scatterometer (a type of 
orbiting radar used for measuring vector 
ocean winds) was constructed at Jet 
Propulsion Laboratory to investigate the 
feasibility of using general purpose 
programmable Digital Signal Processors 
(DSP) to replace the special purpose hardware 
used in the previous successful instruments[1]. 
The architecture used multiple processors to 
reach the required computational 
performance with the available space 
qualified processors (Analog Devices 21020 
family).  Three Astrium MCMDSP modules 
were used in the breadboard, each of which 
integrates the CPU, memory, peripheral 
controls, and a SMCS332 high speed interface. 
The latter was used to implement SpaceWire 
links between the processors. The breadboard 
successfully demonstrated a scalable 
multiprocessor approach for this type of 
instrument.

Early in the development effort it was 
realized that monitoring of the messages 
being passed over the SpaceWire links would 
be essential, particularly for development of 
the low level message passing drivers, as well 
as the higher level algorithms. In particular, 
there was a need to match individual 
messages with specific Radio Frequency (RF) 
pulses transmitted or received by the 
breadboard radar, requiring a real-time 
capability that could not be conveniently met 
with software based solutions in the limited 
resources of the DSP.  The need to make 
real-time performance and timing 
measurements required that the monitoring 
approach be entirely passive (as opposed to a 
decode and retransmit approach). Slide 2 
shows a block diagram of the breadboard, 
together with the circuit used for monitoring.
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SpaceWire continually transmits 
bits at a constant rate (this is 
accomplished by filling in gaps 
with Null characters).

allows us to derive formulas that can determine when a character occurred. For 
example, given the character sequence        ,                 , and the time that       occurred 
(call it     ),  then the time that       occurred is given by:

where     is the bit time, and     is a function that yields the number of bits in 

If either the D or S lines on either 
end (receive, transmit) of the link 
fails to make a transition within 
850 ns., the link will be broken, 
and both sides of the link will 
reset (i.e. stop transmitting for a 
preset time interval).

assures us that property 1 will be enforced.

The SpaceWire bit stream 
contains no framing or error-
correcting bits

imposes a “zero tolerance” condition on bit error. Since no characters are used for 
framing or error correction, it is assumed that each bit will contribute either to the 
content or attributes of a specific character.

The SpaceWire bit stream always 
contains enough error detection 
bits to detect any single bit error.

assures us that if a single bit error does occur, it will be detected. The SpaceWire data  
stream always contains between 10-25% odd parity bits (as attributes of a character). 
When a parity error is detected link is reset. This assures us that no corrupt data will 
gain acceptance by the receiving node (i.e. a detected reset implies that the incoming 
data packet should be discarded).

The separation of the SpaceWire 
bit stream into characters can be 
done in a single pass

allows the separation of the bit stream into characters with the application of  
“straight forward” hardware. 

SpaceWire properties enabling passive monitoring and decoding
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Monitoring with Standard Lab Instruments

The initial efforts to monitor the links used 
differential high impedance probes and a 
digital storage oscilloscope/logic analyzer, 
which was satisfactory at first (it is easy to 
recognize NUL and FCT tokens after a bit of 
practice). When the monitoring need moved to 
needing higher level information beyond “is 
the link running?”, the limited capture 
memory, the high speed signals, and the lack 
of a high level interface prompted further 
development. One of the authors (Loya) 
identified 5 characteristics of the SpaceWire 
protocol design that made possible a simple 
hardware implementation using a small Finite 
State Machine to decode the messages. Table 1 
lists the properties and their implications.

SpaceWire-PCI as a Monitor Receiver

The SpaceWire-PCI card, in a suitable 
realtime programming environment, can 
provide a significant fraction of the 
monitoring functionality that would be 
provided by the fully idealized monitor 
embodied in the state machine described 
above. This approach had the significant 
advantage that it required almost no 
hardware development and there was a 
suitable set of API calls available to integrate 
the card into a realtime computing 
environment.
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The performance limitations of the 
Labview/SpaceWire-PCI monitor 
approach easily keeps up with the usual 
breadboard traffic, consisting of messages 
every few milliseconds consisting of about 
a thousand bytes. Unfortunately, the 
Labview implementation does not allow 
accurate unambiguous time-stamping 
(with an accuracy of milliseconds), mostly 
because of the limitations inherent in the 
NT driver model. 

4Links have developed a series of FPGA 
implementations of SpaceWire, and use 
their latest implementation for monitoring 
SpaceWire links. With access to the data 
when it arrives, it is possible to give very 
precise time-of arrival information. The 
data log below shows time stamp reports, 
such as [11798.205 633 7s[11798.205 633 7s[11798.205 633 7s[11798.205 633 7s], as shown 
by the 4Links EtherSpaceLink ESL-F201 
with the Time-Stamp option. The stamp is 
a free-running 40-bit count with the 
resolution of 100ns. 
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The Time-Code report includes a time stamp of when 
the time code arrived, and the time code in the format 
specified in the SpaceWire standard, with two reserved 
bits and then a six-bit value. Building waveform 
capture into the monitoring system allows the data to 
be presented already decoded, and co-ordinated with a 
report of the triggering event. The waveform below is 
captured during SpaceWire initialization.
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The waveform captured below is the same event as was 
reported on Slide 6. Note the time stamp of when the 
error occurred, the type of error, the state when the 
error occurred, the decode of individual bits, and the 
further decode of those bits into characters. 
These reports were generated by the EtherSpaceLink 
ESL-F201, with options for time codes, time stamps, 
error reporting and error waveforms, and were 
displayed by the SpaceWireUI program. The 
EtherSpaceMon ESM-F200 will bring these 
capabilities to monitoring both directions of links.

EtherSpaceLink ESL-F201


